
HetroOMP: OpenMP for Hybrid
Load Balancing Across

Heterogeneous Processors

Vivek Kumar1(B), Abhiprayah Tiwari1, and Gaurav Mitra2

1 IIIT-Delhi, New Delhi, India
vivekk@iiitd.ac.in

2 Texas Instruments, Houston, USA

Abstract. The OpenMP accelerator model enables an efficient method
of offloading computation from host CPU cores to accelerator devices.
However, it leaves it up to the programmer to try and utilize CPU cores
while offloading computation to an accelerator. In this paper, we propose
HetroOMP, an extension of the OpenMP accelerator model that supports
a new clause hetro which enables computation to execute simultane-
ously across both host and accelerator devices using standard tasking
and work-sharing pragmas.

To illustrate our proposal for a hybrid execution model, we imple-
mented a proof-of-concept work-stealing HetroOMP runtime for the
heterogeneous TI Keystone-II MPSoC. This MPSoC has host ARM
CPU cores alongside accelerator Digital Signal Processor (DSP) cores.
We present the design and implementation of the HetroOMP runtime
and use several well-known benchmarks to demonstrate that HetroOMP
achieves a geometric mean speedup of 3.6× compared to merely using
the OpenMP accelerator model.

Keywords: OpenMP accelerator model ·
Heterogeneous architectures · Hybrid work-stealing

1 Introduction

Modern processor design relies heavily on heterogeneity to deliver high per-
formance and energy-efficiency. As a result, contemporary High Performance
Computing (HPC) systems are widely composed of accelerator devices alongside
multi-core CPU processors. Popular accelerator devices include Graphics Pro-
cessing Units [21] (GPU) and Field Programmable Gate Arrays [25] (FPGA),
while more unconventional accelerators include Digital Signal Processors [17]
(DSP). Such accelerators can be targeted using popular programming models
such as Nvidia’s CUDA [20] and Khronos OpenCL [19]. However, understand-
ing how to use CUDA and OpenCL efficiently is non-trivial. The OpenMP
4.0 [2] accelerator model was introduced to address this issue. It provides a
high-level, portable and compiler directive-based interface which aims to have a
c© Springer Nature Switzerland AG 2019
X. Fan et al. (Eds.): IWOMP 2019, LNCS 11718, pp. 63–77, 2019.
https://doi.org/10.1007/978-3-030-28596-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28596-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-28596-8_5


64 V. Kumar et al.

much smaller learning curve compared to both CUDA and OpenCL. The accel-
erator model is host-centric where the programmer designates regions of code
to be offloaded from the host to an accelerator device while orchestrating a
map/copy of input and output data for that region as required. The OpenMP
compiler then generates accelerator specific low-level code and API calls into
an OpenMP runtime environment which manages input data transfers between
host and accelerator, launches compute kernels on the accelerator and transfers
results back from the accelerator to the host. Although this approach enables
high programmer productivity, a major limitation is that it does not target both
host and accelerator devices simultaneously. While offloading code to an accel-
erator, the onus is on the programmer to manually partition the workload and
run a computation on the host CPU cores.

Several factors affect the efficiency of manual partitioning: (i) the host and
accelerator devices might have very different performance characteristics; (ii)
there may be high communication latency between host and accelerator affect-
ing partition granularity; and (iii) there may be several layers of parallelism in a
compute kernel. These factors make manual partitioning an NP-hard problem.
In most cases host CPU cores remain idle or busy-wait for accelerator cores to
finish computation, thereby wasting CPU cycles and reducing energy-efficiency.
OpenMP does not provide default support to best utilize both host and accelera-
tor resources on a system. In this paper we target this limitation of the OpenMP
accelerator model by focusing on two research questions:

RQ1 : Without affecting programmer productivity, is it possible to extend
the OpenMP accelerator model to identify computation suitable for hybrid
execution over both host and accelerator device?
RQ2 : Is it possible to design and implement a high-performance OpenMP
runtime that could dynamically load balance computation across heteroge-
neous processing elements?

To address RQ1, we propose HetroOMP, an extension of the OpenMP accelerator
model with a new clause “hetro”. It enables execution of OpenMP task and
parallel for loops simultaneously across both host and accelerator devices using
compiler source-to-source translation. The critical focus on energy-efficiency
has led the HPC community to consider low-power heterogeneous ARM SoC
based embedded systems with various accelerators (GPU, DSP) on-chip as pos-
sible alternatives to conventional HPC systems. To address RQ2 we use such
an embedded system, the Texas Instruments Keystone II [24] Hawking (K2H)
Multi-Processor System-on-chip (MPSoC) which houses a quad-core ARM CPU
and eight-core DSP accelerator on-chip.

We present the design of a novel, lightweight work-stealing [6] runtime imple-
mented on K2H which enables high-performance load-balancing across both
ARM and DSP cores. Several OpenMP tasking and parallel for benchmarks
are used to compare the performance of the HetroOMP runtime to the default
OpenMP device and host-only executions using the TI OpenMP runtime. We
show that HetroOMP is highly competitive and can outperform default OpenMP.
In summary, this paper makes the following contributions:



HetroOMP: OpenMP for Hybrid Load Balancing 65

– HetroOMP, an extension to OpenMP accelerator model, which enables hybrid
parallelism across host and accelerator device.

– A lightweight runtime implementation of HetroOMP that uses work-stealing
for dynamic load-balancing across heterogeneous processing elements.

– Evaluation of HetroOMP on TI Keystone-II MPSoC by using several well-
known tasking and parallel for benchmarks.

2 Related Work

OpenACC [26] is a directive-based programming model for Nvidia GPUs.
OmpSs [10] extended the OpenMP task directives to the StarSs [22] program-
ming model supporting kernel offloads for GPUs and FPGAs [10]. Chapman et
al. [7] and Mitra et al. [18] presented implementations of OpenMP accelerator
model for TI Keystone-II MPSoC. Mitra et al. further improved the OpenMP
implementation for TI Keystone-II MPSoC [4] by presenting a framework that
automatically addressed the parallelization of code annotated with OpenMP 4.0
directives. However, none of these implementations support dynamic load bal-
ancing across both host and accelerators.

There have been prior studies on hybrid execution across host and device.
Luk et al. [16] presented a heterogeneous programming model that automatically
partitioned loop level parallelism across host and GPU for hybrid execution.
Barik et al. [5] presented another such hybrid programming model for CPU-GPU
platforms. A common limitation in both these studies is that a prior training
run of an application is mandatory to discover the optimal work partition ratio.
Ozen et al. proposed extensions to OpenMP accelerator model to support hybrid
execution across CPU and GPU. As GPUs are mostly suited for data-parallelism,
their proposed extensions were tailored for work-sharing pragmas. Linderman et
al. proposed a map-reduce based programming model for automatic distribution
of computations across heterogeneous cores and evaluated it over a CPU-GPU
based processor [15]. CnC-HC programming model [23] provided a work-stealing
based dynamic load balancing across CPUs, GPUs and FPGAs. Kumar et al.
[13] presented HC-K2H programming model for TI Keystone-II MPSoC that
used a hybrid work-stealing runtime for dynamic load balancing across ARM
and DSP cores (Sect. 3.2).

3 Background

3.1 TI Keystone-II MPSoC

Recent work [17] has considered the TI ARM/DSP K2H SoC for HPC workloads.
It has 4 ARM Cortex-A15 cores running at up to 1.4 GHz and 8 TI C66x floating-
point DSP cores running at up to 1.2 GHz. The ARM cores have 32 KB of L1
cache each and 4 MB of shared L2 cache while DSP cores can have 32 KB of L1
cache and 1 MB of L2 cache each. The ARM cores have hardware managed cache
coherence, while the DSP cores do not. Additionally, there is no cache coherence



66 V. Kumar et al.

between ARM and DSP cores. Both ARM and DSP cores share the same memory
bus to off-chip DDR memory but have separate address spaces. The Multicore
Shared Memory Controller in K2H provides 6 MB of shared scratchpad mem-
ory (SRAM) between ARM and DSP cores. The Multicore Navigator provides
hardware queues (henceforth mentioned as HardwareQueue) that can be used to
communicate and dispatch tasks between ARM and DSP cores. There are two
queue managers with 8192 queues each and 64 descriptor memory regions per
queue manager.

3.2 Hybrid Work-Stealing Methodology

We address RQ2 (Sect. 1) by implementing a hybrid work-stealing runtime. It
shares characteristics with HC-K2H [13] which supported an async–finish [8]
based parallel programming model. An async–finish program is represented
as “finish{ async S1; S2 } S3;”. Here, the async clause creates a task S1
that could run in parallel to task S2. Statement finish starts a finish scope
and ensures both tasks S1 and S2 are completed before starting the execution
of S3. HC-K2H supports the forasync loop-level parallelism construct which
recursively divides a for loop’s iterations into two halves with each recursion
step being an async.

Fig. 1. Work-stealing imple-
mentation

HC-K2H used a hybrid work-stealing runtime
for dynamic load balancing of async tasks across
ARM and DSP cores. Work-stealing is a very effi-
cient strategy for distributing work in a parallel
system and is implemented as shown in Fig. 1. It
consists of a pool of threads, where each thread
(worker) maintains a data structure (deque) to
push the local set of tasks (from the tail end).
When a worker becomes idle, it attempts to pop
a task from the tail of its deque. If it fails to pop,
then it becomes a thief and searches for a victim
in the thread pool from which to steal a task (from
the head end).

This double ended software deque (henceforth mentioned as CilkDeque) was
introduced by the Cilk language [11]. HC-K2H used a similar CilkDeque based
work-stealing implementation for ARM cores (ARM WS). As DSP cores do not
support CilkDeque which could be accessed directly by any other DSP or ARM
cores, HC-K2H used a separate work-stealing runtime for DSP cores (DSP WS)
that used HardwareQueue instead of CilkDeque. A HardwareQueue differs sig-
nificantly from a CilkDeque as it is not double-ended and can be used only in
two modes, either as a Last-In-First-Out (LIFO) queue or as a First-In-First-Out
(FIFO) queue. DSP WS uses the LIFO implementation of HardwareQueue where
all three operations push, pop and steal happen only from the tail end. When-
ever ARM or DSP workers go idle in HC-K2H, they first attempted an intra-arch
steal before attempting an inter-arch steal. ARM workers can directly perform
inter-arch steals from DSP worker’s HardwareQueue. As DSP workers cannot



HetroOMP: OpenMP for Hybrid Load Balancing 67

1 int *A /* size=N*/, *B /* size=N*/, *C /* size=N*/, N;
2 int cache line = omp cache granularity();

3 int MIN CHUNK = cache line/sizeof(int);

4 main() {
5 int i;
6 #pragma omp target map(tofrom:C[0:N]) \
7 map(to:A[0:N], B[0:N], N)
8 #pragma omp parallel for firstprivate(A, B, C) \
9 private(i) schedule(hetro, MIN CHUNK)

10 for(i=0; i<N; i++) {
11 C[i] = A[i] + B[i];
12 }
13 }

(a) Parallel vector addition in HetroOMP by using work-
sharing pragma

1 int* A /* size=N*/, N;
2 int cache line = omp cache granularity();

3 int MIN CHUNK = cache line/sizeof(int);

4 void msort(int left , int right) {
5 if(right -left > MIN CHUNK) {
6 int mid = left+(right -left )/2;
7 #pragma omp task untied \
8 firstprivate(left , mid) hetro(A:N)
9 msort(left , mid);

10 msort(mid+1, right);
11 #pragma omp taskwait
12 merge(left , mid , right );
13 } else {
14 sequentialSort(left , right );
15 }
16 }
17 main() {
18 #pragma omp target map(to:N) \
19 map(tofrom:A[0:N])
20 #pragma omp parallel \
21 firstprivate(A,N) hetro
22 #pragma omp single
23 msort(0, N-1);
24 }

(b) Parallel recursive MergeSort in
HetroOMP by using tasking pragma

(c) Example of false sharing happening across ARM and DSP cores during
a hybrid execution. ARM cache line size is 64 bytes whereas for DSP it is
128 bytes. Cache write back from DSP can overwrite the results calculated
by ARM unless ARM also operates on 128 bytes cache line granularity.

Fig. 2. HetroOMP programming model. Underlined code in Figs. 2(a) and (b) are
HetroOMP specific code in standard OpenMP.

access ARM’s CilkDeque, a shared HardwareQueue was used by ARM workers
to offer tasks to DSP workers for inter-arch stealing.

4 HetroOMP Programming Model

HetroOMP addresses RQ1 (Sect. 1) by extending the OpenMP accelerator model
with a new clause, hetro, which can be used to perform hybrid execution of com-
putation kernels with work-sharing and tasking pragmas. Figure 2 shows usage of
the hetro clause in two different OpenMP programs, a parallel for based vec-
tor addition in Fig. 2(a), and task-based parallel divide-and-conquer implemen-
tation of MergeSort in Fig. 2(b). HetroOMP specific code in both these examples
has been underlined. Removing the HetroOMP code will leave a valid OpenMP
4.0 program that simply offloads computation to the accelerator. Clause hetro
could be used in three different ways: (a) as a clause to pragma omp parallel



68 V. Kumar et al.

indicating the scope of hybrid execution, (b) as a parameter to schedule clause
in pragma omp for, with an optional chunk size showing hybrid execution of
loop iterations, and (c) as a clause to pragma omp task along with the name
and count of all writable type shared variables in this task, e.g., “Var1:Count1,
Var2:Count2, ..., VarN:CountN” (detailed explanation in Sect. 6.2).

False sharing is a well-known performance bottleneck in shared memory
parallel programs. However, it can also affect the correctness of a HetroOMP
program. This could happen due to differences in cache line sizes and cache
coherency protocols across host and accelerator. To understand this, consider
Fig. 2(c) that represents the execution of a HetroOMP program shown in
Fig. 2(a) with a chunk size of 16 instead of MIN CHUNK. The total number of
chunks (tasks) generated would be N/16 with each chunk 64 bytes in size. ARM
cores (host) on K2H are cache coherent with L1 cache line size of 64 bytes,
whereas DSP cores (device) are not cache coherent and have L1 cache line size
of 128 bytes. Cache coherent ARM cores compute Chunk1 and Chunk3 with
results automatically written back to the main memory. Chunk2 is calculated
later by a DSP core, and explicit write-back of L1 cache is performed for the
result to appear on main memory. However, this 128 byte write-back could pos-
sibly corrupt the result of either Chunk1 or Chunk3. HetroOMP programmers
can resolve this either by using chunk size in multiples of 32 (128 bytes) or by
padding the result C vector such that each chunk is of size 128 bytes (or it’s
multiple). HetroOMP provides a new API omp get min ganularity to calcu-
late the cache line granularity. Programmers can follow conventional task cutoff
techniques for controlling the task granularity of compute-bound programs that
does not depend on MIN CHUNK (e.g., Fib in Sect. 7).

5 Design of HetroOMP Runtime

5.1 Limitations of HardwareQueue

Recall from Sect. 3.2, HC-K2H uses HardwareQueue for implementing DSP WS
where all three operations, push, pop and steal happen at the tail end (LIFO).
In spite of design simplicity, such a HardwareQueue based work-stealing runtime
suffers from two subtle issues unlike the CilkDeque: (a) load imbalance among
DSP cores leading to frequent steals, and (b) cache write-back and invalidation
operation (henceforth mentioned as CacheWBInv) at every end finish scope.

CilkDeque is designed to support push and pop operations from the tail end
(LIFO) and stealing operations from the head end (FIFO). LIFO accesses by vic-
tims improves locality whereas FIFO accesses by thieves reduce load imbalance
(frequent steals). In regular divide-and-conquer applications, older tasks (avail-
able on the head) are more computationally intensive than the recently created
tasks (available on tail). Hence, stealing from FIFO end will execute a more sig-
nificant chunk of computation than from LIFO end. However, HardwareQueue
based DSP WS in HC-K2H lacked this benefit as both victim and thief workers
operated from the same side, thereby leading to frequent steals.



HetroOMP: OpenMP for Hybrid Load Balancing 69

The other limitation of HardwareQueue based DSP WS is mandatory CacheW-
BInv at every end finish scope. Recall, HardwareQueue is directly accessible to
all ARM and DSP cores. Due to this some of the async tasks generated within
a finish scope can execute at cache coherent ARM cores while some of them
could execute at cache incoherent DSP cores. As task owner (DSP) itself is cache
incoherent, they cannot discover that an async task was stolen unless they per-
form explicit CacheWBInv at every end finish scope. This is a costly operation
that won’t affect the performance of flat finish based kernels (e.g., parallel
for) but can significantly hamper the performance of task parallelism based
applications containing nested finish scopes.

5.2 Private Deque Based DSP WS

HetroOMP has been designed considering two main factors (a) CacheWBInv
is not required at every end finish scope but it should be done only when
a steal happens between two cache-incoherent processors under a finish scope,
and (b) DSP WS can reap the benefits of work-stealing only if it also allows steal
operations from its head end (FIFO) and push/pop from its tail end (LIFO).
These two factors are accounted in HetroOMP by using a private deque [3]
(henceforth mentioned as PvtDeque) based implementation of DSP WS instead of
HardwareQueue. Acar et. al. originally introduced PvtDeque but in the context
of reducing the overheads associated with memory fence operations in CilkDeque.
PvtDeque differs from CilkDeque only in terms of steal operation as it doesn’t
allow a thief to steal a task directly. The thief has to make an entry in the
communication cell hosted by a victim which keeps checking this communication
cell during its push and pop operations. If they notice a waiting thief, they steal
a task (on the thief’s behalf) from the head end (FIFO) of its PvtDeque and
then transfer it to the thief. For implementing a PvtDeque for each DSP core
in HetroOMP, we reconfigured the default 1 MB L2 cache available to each
DSP such that 512 KB remained as L2 cache and the rest as un-cached SRAM
containing the PvtDeque.

6 Implementation of HetroOMP Runtime

6.1 Source-to-Source Translation of a HetroOMP Program

We extended the OpenMP-to-X [12] framework, such that it can perform source-
to-source translation of HetroOMP code into a C program with calls to the Het-
roOMP runtime. OpenMP-to-X uses Clang LibTooling [1] and was designed to
perform source-to-source translation of an OpenMP program into a HClib [14]
program. Figure 3 shows the result of this source-to-source translation for the
program shown in Fig. 2(b). The underlined code in Fig. 3 demonstrates the mod-
ifications to default HC-K2H program to support the HetroOMP runtime API
calls. Translation of HetroOMP to C code begins from the main method. Pragma
target map (Fig. 2(b), Line 18) gets replaced with an API call for variable ini-
tialization at DSP (Fig. 3, Line 43). The tofrom and to clauses are ignored as



70 V. Kumar et al.

1 int* A /* size=N*/, N;
2 int cache_line = DSP_CACHE_LINE; // 128 bytes
3 int MIN_CHUNK = cache_line/sizeof(int);
4 void msort(int left , int right) {
5 if(right -left > MIN_CHUNK) {
6 int mid = left+(right -left )/2;
7 /* start new nested finish scope */
8 finish=allocate ();
9 setup_current_finish(finish );

10 finish ->writable_vars(A, sizeof(int)*N);
11 finish->incoherentCoreSteals=false;

12 /* launch task */
13 task=create_task(msort , left , mid);
14 if(ARM) {
15 push CilkDeque(task);

16 }
17 if(DSP) {
18 push PrivateL2Deque(task);

19 help incoherentCore steal();

20 }
21 ATOMIC(finish ->pendingAsyncs ++);
22 /* this will create nested async -finish */
23 msort(mid+1, right);

24 /* end current finish scope */
25 while(finish ->pendingAsyncs >0) {
26 if(tasks_on_my_deque ()>0) {
27 help incoherentCore steal();

28 pop_and_execute ();
29 }
30 else steal_and_execute ();
31 }
32 if(finish->incoherentCoreSteals) {
33 cacheWbInv(finish->get writable vars());

34 }
35 setup_current_finish(finish ->parent );
36 /* continue seqential execution */
37 merge(left , mid , right );
38 } else {
39 sequentialSort(left , right );
40 }
41 }
42 main() {
43 initialize_at_DSP_device(A, N);
44 hybrid execution(true);

45 msort(0, N-1);
46 }

Fig. 3. Source-to-source translation of HetroOMP program shown in Fig. 2(b). All
underlined code are the changes in HC-K2H runtime code to support HetroOMP.

data does not need to be copied between host and accelerator device as shared
DDR memory between ARM and DSP is being utilized. Clause hetro on pragma
parallel (Fig. 2(b), Line 12) indicates hybrid execution across host and accel-
erator (Fig. 3, Line 44). Without the hetro clause DSP-only offload will occur.
The translation of code in Fig. 2(a) happens in a similar fashion. The only dif-
ference being, the pragma parallel for will be converted to a forasync API
with chunk size MIN CHUNK to avoid false sharing.

In this prototype implementation of the HetroOMP translator, a naive app-
roach toward source code translation for pragma task and pragma taskwait is
adopted. The pragma task is replaced with an async creation (Fig. 3, Lines 13–
21) and pragma taskwait is replaced with an end finish scope (Fig. 3, Lines 25–
35). In order to decide when to generate the start finish scope, a boolean flag is
used. It is set to true at pragma parallel (Fig. 2(b), Line 20). After this when
the translator encounters a pragma task (Fig. 2(b), Line 7), it will first gener-
ate a start finish scope (Fig. 3, Lines 8–11) followed by an async creation. The
boolean flag is then set to false. Any further pragma task will then be translated
to an async only. This flag is reset to true again at pragma taskwait (Fig. 2(b),
Line 11).

6.2 HetroOMP Code Flow

In Fig. 3, the call to recursive msort method first creates a finish object at
Line 8. This finish object then stores the pointer to its parent finish (Line 9),
and the list of writable type shared variables under this finish scope (Line 10).
These writable type shared variables are the ones indicated by the user in the
hetro clause to pragma omp task (Fig. 2(b), Line 8).

HetroOMP has a boolean counter incoherentCoreSeals at each finish
(Fig. 3, Line 11) for tracking when CacheWBInv is required at the end finish



HetroOMP: OpenMP for Hybrid Load Balancing 71

scope. ARM cores in HetroOMP directly push a task to CilkDeque (Line 15).
HC-K2H did it differently as in that case ARM cores pushed few tasks to shared
HardwareQueue in advance for DSPs to steal. Delaying it until an actual steal
request from DSP helps HetroOMP understand the finish scope from where
a task went to a cache incoherent core. A DSP core in HetroOMP first pushes
a task to the tail of its PvtDeque (Line 18) and then executes the method
help incoherentCore steal to transfer a task to any waiting thief (Line 19). At
the end finish scope both ARM and DSP cores find and execute tasks until there
are no more pending under this finish scope (Line 25). If tasks are available on
local deque then while inspecting, both ARM and DSP workers in HetroOMP
first execute the method help incoherentCore steal (Line 27) for transferring
a task to any waiting thief followed by popping a task for self-execution (Line 28).
Each DSP in HetroOMP has a dedicated HardwareQueue based communication
cell where a thief (ARM/DSP) can indicate its steal request. Another Hardware-
Queue is shared between ARM and DSP where an ARM core can push a task for
DSPs to steal. For transferring a task to a waiting thief (at an incoherent core), a
DSP can steal a task from the head of its PvtDeque and then move it to waiting
thief (ARM/DSP), whereas an ARM worker steals a task from the head of its
CilkDeque and pushes it to shared HardwareQueue (for DSP). As a thief receives
a task from the head end of either of the deques, the number of steals can be
reduced between cache incoherent workers. Whenever a core transfers a task via
help incoherentCore steal, it will first perform a CacheWBInv followed by
updating the counter incoherentCoreSeals in the current finish as true. For
stealing, each core first attempts an intra-arch steal followed by an inter-arch
steal upon failing (Line 30). Once out of the spin loop but before ending cur-
rent finish scope, both ARM and DSP will do a CacheWBInv for all writable
type shared variables (Line 33) based on the status of incoherentCoreSeals
(Line 32). This technique avoids costly cache flushes in HetroOMP at every end
finish scope.

7 Experimental Methodology

Across all experimental evaluations two broad categories of OpenMP bench-
marks were used: (a) recursive divide-and-conquer applications that used nested
task and taskwait pragmas, and (b) applications using parallel for loop prag-
mas. Each of these benchmarks is described in Table 1. We have chosen only
those benchmarks where it was straightforward to remove false sharing between
ARM and DSP either by loop tiling, by padding of shared data structures, or
by altering task granularity. Padding was only applied as last strategy.

Five different versions of each benchmark were used: (a) OpenMP ARM-only
implementation that runs only on ARM cores, (b) OpenMP DSP-only implemen-
tation that runs only on DSP cores, (c) HetroOMP version that uses the hetro
clause but supports all 3 configurations (ARM-only, DSP-only, and Hybrid), (d)
HC-K2H version that also supports all 3 configurations similar to HetroOMP,
and (e) Sequential ARM implementation that executes on ARM and is obtained



72 V. Kumar et al.

Table 1. Benchmarks used for the evaluation of HetroOMP

Name Description Common settings Source OpenMP
category

Fib Calculate Nth
Fibonacci number

N = 40. Task cutoff at N = 20 HC-K2H [13] Tasking

Matmul Multiplication of
two matrices

Size = 1024× 1024. Task cutoff
at 6xMIN CHUNK

Cilk [11] Tasking

Knapsack Solves 0–1 knapsack
problem using
branch and bound
technique

N = 500 and capacity = 20000.
Task cutoff at depth= 10

Cilk Tasking

MergeSort Merge sort
algorithm

Array size = 4096× 4096. Task
cutoff at 4xMIN CHUNK

Authors Tasking

Heat Heat diffusion using
Jacobi type
iterations

nx =8192, ny = 2048 and
nt =10.
Task cutoff at MIN CHUNK

Cilk Tasking

BFS Breadth first search
algorithm

Input as graph4M.txt.
Chunks=512 (first parallel
for) and
Chunks=4192 (second
parallel for)

Rodinia [9] Parallel for

Hotspot Iterative thermal
simulation

grid rows = grid cols = 4096,
sim time = 10,
temp file = temp 4096,
power file =power 4096.
Chunks=1

Rodinia Parallel for

Srad Diffusion method
based on partial
differential equations

rows = cols = 4096, y1 =
x1 = 0, y2 = x2 = 127,
lambda = 0.5, iterations = 2.
Chunks=1

Rodinia Parallel for

LUD Decomposes a matrix
as the product of
a lower triangular
matrix and an
upper triangular
matrix

Matrix dimension = 4096 and
block size = 64. Chunks= 1

Rodinia Parallel for

B+Tree Similar to binary
search tree but
each node can have
up to
n− 1 keys instead of
just two

file = mil.txt and
command = command2.txt.
Chunks=32

Rodinia Parallel for

by removing all OpenMP pragmas. For all three configurations (ARM-only,
DSP-only, and Hybrid) the measurements are reported using all available cores
under that configuration, i.e., ARM-only uses all 4 ARM cores, DSP-only uses all
8 DSP cores, and Hybrid uses all 12 cores (4 ARMs and 8 DSPs). Task cutoff in
tasking type and total chunks in parallel for type benchmarks were chosen



HetroOMP: OpenMP for Hybrid Load Balancing 73

such that they achieved the best performance in each of the four parallel ver-
sions. A static schedule was used in both OpenMP multicore and accelerator
model variants of each benchmark as it delivered the best performance. Each
of the five implementations was executed ten times and we report the mean
of the execution time, along with a 95% confidence interval. To generate ARM
binaries, the ARM Linaro gcc compiler version 4.7.3 was used with these flags:
-O3 -mcpu=cortex-a15 -mfpu=vfpv4 -mfloat-abi=hard -fopenmp. To gen-
erate DSP binaries with OpenMP, the TI CLACC OpenMP Accelerator Model
Compiler version 1.2.0 was used with these flags: --hc=‘‘-O3 -fopenmp -marm
-mfloat-abi=hard’’ --tc=‘‘-O3’’. To generate DSP binaries for HC-K2H
and HetroOMP the TI C66x compiler cl6x version 8.0.3 was used with flags:
abi=eabi -mv6600 -op3 -ma multithread -O3.

8 Experimental Evaluation

8.1 Total Number of Steals in PvtDeque v/s HardwareQueue

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

BFS
B+Tree

Fib Heat
Hotspot

Knapsack

LUD
Matmul

MergeSort

Srad

Benchmarks

Ratio of total steals in DSP_WS (HC-K2H / HetroOMP)

Fig. 4. Total number of DSP-only steals in
HC-K2H normalized to HetroOMP

In Sect. 5 we described our choice of
PvtDeque based implementation for
DSP WS in HetroOMP. It is basically
for reducing load imbalance between
DSP workers by supporting FIFO
steal operations. In this section the
benefit of this approach is illustrated.
For each benchmark, we calculated
the total number of steals during
DSP-only execution across both HC-
K2H and HetroOMP runtimes. The
ratio between the result obtained for
HC-K2H and that of HetroOMP is then measured. Results of this experiment
are shown in Fig. 4. We can observe that the total number of steals among
DSP workers in HC-K2H is 76× (Hotspot) to 4.5× (MergeSort) of that in Het-
roOMP. The reason for this wide variation is task granularity as there are always
lesser number of steals for coarse granular tasks than fine granular tasks. Both
HetroOMP and HC-K2H execute a parallel for loop in a recursive divide-and-
conquer fashion. Hence, for both tasking and parallel for type benchmarks,
FIFO steals based PvtDeque displace a significant chunk of computation unlike
the LIFO steal based HardwareQueue implementation inside HC-K2H.

8.2 Performance Analysis

In this section, we describe the performance of HetroOMP on K2H. For this
study, all three versions of each benchmark (HetroOMP, HC-K2H, and OpenMP)
were executed, first by using all four ARM cores only (ARM-only), and then by
using all eight DSP cores only (DSP-only). Apart from this, hybrid execution



74 V. Kumar et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

ARM-only DSP-only Hybrid

S
pe

ed
up

 o
ve

r 
A

R
M

 s
eq

ue
nt

ia
l

OpenMP HC-K2H HetroOMP

(a) Fib

 0

 2

 4

 6

 8

 10

 12

ARM-only DSP-only Hybrid

S
pe

ed
up

 o
ve

r 
A

R
M

 s
eq

ue
nt

ia
l

OpenMP HC-K2H HetroOMP

(b) Matmul

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

ARM-only DSP-only Hybrid

S
pe

ed
up

 o
ve

r 
A

R
M

 s
eq

ue
nt

ia
l

OpenMP HC-K2H HetroOMP

(c) Knapsack

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

ARM-only DSP-only Hybrid

S
pe

ed
up

 o
ve

r 
A

R
M

 s
eq

ue
nt

ia
l

OpenMP HC-K2H HetroOMP

(d) MergeSort

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

ARM-only DSP-only Hybrid

S
pe

ed
up

 o
ve

r 
A

R
M

 s
eq

ue
nt

ia
l

OpenMP HC-K2H HetroOMP

(e) Heat

 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2
 4.4
 4.6

ARM-only DSP-only Hybrid

S
pe

ed
up

 o
ve

r 
A

R
M

 s
eq

ue
nt

ia
l

OpenMP HC-K2H HetroOMP

(f) BFS

 1

 2

 3

 4

 5

 6

 7

 8

ARM-only DSP-only Hybrid

S
pe

ed
up

 o
ve

r 
A

R
M

 s
eq

ue
nt

ia
l

OpenMP HC-K2H HetroOMP

(g) Hotspot

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

ARM-only DSP-only Hybrid

S
pe

ed
up

 o
ve

r 
A

R
M

 s
eq

ue
nt

ia
l

OpenMP HC-K2H HetroOMP

(h) Srad

 2

 4

 6

 8

 10

 12

 14

 16

 18

ARM-only DSP-only Hybrid

S
pe

ed
up

 o
ve

r 
A

R
M

 s
eq

ue
nt

ia
l

OpenMP HC-K2H HetroOMP

(i) LUD

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

ARM-only DSP-only Hybrid

S
pe

ed
up

 o
ve

r 
A

R
M

 s
eq

ue
nt

ia
l

OpenMP HC-K2H HetroOMP

(j) B+Tree

Fig. 5. Speedup over sequential execution at ARM. Benchmarks in (a)–(e) are of task-
ing type whereas those in (f)–(j) are parallel for type.



HetroOMP: OpenMP for Hybrid Load Balancing 75

of HetroOMP and HC-K2H implementations was also performed across all four
ARM and eight DSP cores (Hybrid). The speedup was then calculated for each
execution (ARM-only, DSP-only, and Hybrid) over Sequential execution on ARM
core. Results of this experiment are shown in Fig. 5. OpenMP’s DSP-only exe-
cution of Heat and LUD did not complete due to which the results of these
experiments are missing in Figs. 5(e) and (i).

Tasks Based Benchmarks: Figures. 5(a)–(e) show the experimental results
for tasking benchmarks. These benchmarks recursively spawn and synchronize
on asynchronous tasks similar to MergeSort implementation shown in Fig. 2(b).
We can observe that due to the reduced number of steals in DSP WS and due
to the reduced number of CacheWBInv operations, HetroOMP outperformed
HC-K2H for both DSP-only and Hybrid executions. Matmul is an outlier as its
performance with both these runtimes are in the same ballpark. This is due
to high steal ratio in Matmul, unlike all other benchmarks. It was found to be
around 65% for DSP-only and Hybrid execution in both these runtimes. ARM WS
implementation is similar across HetroOMP and HC-K2H resulting in identical
performance. Hybrid execution of HetroOMP always outperformed ARM-only
and DSP-only based OpenMP executions (except Knapsack).

Parallel for Type Benchmarks: Figures 5(f)–(j) show the experimental
results for parallel for benchmarks. ARM-only execution is again identical
across both HetroOMP and HC-K2H (explained above). For DSP-only and
Hybrid executions, HetroOMP performance relative to HC-K2H was in the range
0.86×–1.7× (higher is better). In spite of the benefits of FIFO steals, PvtDeque
also has a limitation that it performs slightly weak for coarse granular tasks. It is
because the victim is not able to quickly respond to a steal request while execut-
ing coarse granular tasks compared to fine granular tasks. Also, due to an implicit
barrier at the end of pragma omp for, these benchmarks are of flat finish type,
i.e., a single level of task synchronization. Optimizations for reducing CacheW-
BInv in HetroOMP are suitable only for nested finish type benchmarks and
hence are not enabled during the execution of flat finish benchmarks. Here too
Hybrid execution of HetroOMP always outperformed ARM-only and DSP-only
based OpenMP executions. BFS is an outlier as even with bigger chunk sizes
(see Table 1), both HC-K2H and HetroOMP incurred tasking overheads due to
the largest number of tasks (around 120 K while the average number across five
benchmarks was 53K). Unlike HC-K2H and HetroOMP, OpenMP executions
used static schedule where tasks are statically assigned to the threads. Over-
all, HetroOMP and HC-K2H obtained a geometric mean speedup of 3.6× and
2.6× respectively over DSP-only OpenMP execution.

9 Conclusion and Future Work

In this paper, we studied the limitations of the OpenMP accelerator model by
using a heterogeneous MPSoC. We demonstrated that for achieving optimal



76 V. Kumar et al.

performance, it is essential to utilize the computing power of all the process-
ing elements instead of solely using the accelerator. We proposed extensions
to the standard OpenMP accelerator model to enable simultaneous execution
across both host and accelerator devices. We presented and evaluated a novel
hybrid work-stealing runtime for OpenMP that efficiently executed computation
across all processing elements of a heterogeneous SoC and outperformed stan-
dard OpenMP accelerator model. As a future work, we aim to extend HetroOMP
with energy efficient execution capabilities.

Acknowledgments. We are grateful to the anonymous reviewers for their suggestions
on improving the presentation of the paper, and to Eric Stotzer from Texas Instruments
for shipping a brand new TI Keystone-II MPSoC to IIIT Delhi.

References

1. Clang LibTooling, April 2019. https://clang.llvm.org/docs/LibTooling.html
2. OpenMP API, version 4.5, March 2018. http://www.openmp.org/wp-content/

uploads/openmp-4.5.pdf
3. Acar, U.A., Chargueraud, A., Rainey, M.: Scheduling parallel programs by work

stealing with private deques. In: PPoPP, pp. 219–228 (2013). https://doi.org/10.
1145/2442516.2442538

4. Aguilar, M.A., Leupers, R., Ascheid, G., Murillo, L.G.: Automatic parallelization
and accelerator offloading for embedded applications on heterogeneous MPSoCs.
In: DAC, pp. 49:1–49:6 (2016). https://doi.org/10.1145/2897937.2897991

5. Barik, R., Farooqui, N., Lewis, B.T., Hu, C., Shpeisman, T.: A black-box approach
to energy-aware scheduling on integrated CPU-GPU systems. In: CGO, pp. 70–81
(2016). https://doi.org/10.1145/2854038.2854052

6. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46 (1999). https://doi.org/10.1145/324133.324234

7. Chapman, B., Huang, L., Biscondi, E., Stotzer, E., Shrivastava, A., Gatherer, A.:
Implementing OpenMP on a high performance embedded multicore MPSoC. In:
IPDPS, pp. 1–8 (2009). https://doi.org/10.1109/IPDPS.2009.5161107

8. Charles, P., Grothoff, C., Saraswat, V., et al.: X10: an object-oriented approach
to non-uniform cluster computing. In: OOPSLA, pp. 519–538 (2005). https://doi.
org/10.1145/1094811.1094852

9. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.:
Rodinia: a benchmark suite for heterogeneous computing. In: IISWC, pp. 44–54
(2009). https://doi.org/10.1109/IISWC.2009.5306797

10. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: OmpSs: a proposal for programming heterogeneous multi-core archi-
tectures. Parallel Process. Lett. 21(02), 173–193 (2011). https://doi.org/10.1142/
S0129626411000151

11. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: PLDI, pp. 212–223 (1998)

12. Grossman, M., Shirako, J., Sarkar, V.: OpenMP as a high-level specification lan-
guage for parallelism. In: IWOMP, pp. 141–155 (2016). https://doi.org/10.1007/
978-3-319-45550-1 11

https://clang.llvm.org/docs/LibTooling.html
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://doi.org/10.1145/2442516.2442538
https://doi.org/10.1145/2442516.2442538
https://doi.org/10.1145/2897937.2897991
https://doi.org/10.1145/2854038.2854052
https://doi.org/10.1145/324133.324234
https://doi.org/10.1109/IPDPS.2009.5161107
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1007/978-3-319-45550-1_11
https://doi.org/10.1007/978-3-319-45550-1_11


HetroOMP: OpenMP for Hybrid Load Balancing 77

13. Kumar, V., Sb̂ırlea, A., Jayaraj, A., Budimlić, Z., Majeti, D., Sarkar, V.: Het-
erogeneous work-stealing across CPU and DSP cores. In: HPEC, pp. 1–6 (2015).
https://doi.org/10.1109/HPEC.2015.7322452

14. Kumar, V., Zheng, Y., Cavé, V., Budimlić, Z., Sarkar, V.: HabaneroUPC++:
a compiler-free PGAS library. In: PGAS 2014 (2014). https://doi.org/10.1145/
2676870.2676879

15. Linderman, M.D., Collins, J.D., Wang, H., Meng, T.H.: Merge: a programming
model for heterogeneous multi-core systems. In: Proceedings of the 13th Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems, pp. 287–296. ASPLOS (2008). https://doi.org/10.1145/1346281.
1346318

16. Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping. In: MICRO, pp. 45–55 (2009). https://doi.
org/10.1145/1669112.1669121

17. Mitra, G., Bohmann, J., Lintault, I., Rendell, A.P.: Development and application of
a hybrid programming environment on an ARM/DSP system for high performance
computing. In: IPDPS, pp. 286–295 (2018). https://doi.org/10.1109/IPDPS.2018.
00038

18. Mitra, G., Stotzer, E., Jayaraj, A., Rendell, A.P.: Implementation and optimization
of the OpenMP accelerator model for the TI Keystone II architecture. In: Using
and Improving OpenMP for Devices, Tasks, and More, pp. 202–214 (2014). https://
doi.org/10.1007/978-3-319-11454-5 15

19. Munshi, A.: The OpenCL specification. In: IEEE Hot Chips, pp. 1–314 (2009)
20. Compute Unified Device Architecture Programming Guide, April 2019
21. ORNL: Summit supercomputer. https://www.olcf.ornl.gov/summit/. Accessed

April 2019
22. Planas, J., Badia, R.M., Ayguadé, E., Labarta, J.: Hierarchical task-based pro-

gramming with StarSs. IJHPCA 23(3), 284–299 (2009). https://doi.org/10.1177/
1094342009106195

23. Sb̂ırlea, A., Zou, Y., Budimĺıc, Z., Cong, J., Sarkar, V.: Mapping a data-flow pro-
gramming model onto heterogeneous platforms. LCTES 47, 61–70 (2012). https://
doi.org/10.1145/2248418.2248428

24. Texas Instruments: C66AK2H multicore DSP+ARM Keystone II System-On-Chip.
Texas Instruments Literature: SPRS866

25. Paderborn University: Noctua supercomputer. https://pc2.uni-paderborn.de/
about-pc2/announcements/news-events/article/news/supercomputer-noctua-
inaugurated/. Accessed April 2019

26. Wienke, S., Springer, P., Terboven, C., an Mey, D.: OpenACC first experiences
with real-world applications, pp. 859–870. EuroPar (2012). https://doi.org/10.
1007/978-3-642-32820-6 85

https://doi.org/10.1109/HPEC.2015.7322452
https://doi.org/10.1145/2676870.2676879
https://doi.org/10.1145/2676870.2676879
https://doi.org/10.1145/1346281.1346318
https://doi.org/10.1145/1346281.1346318
https://doi.org/10.1145/1669112.1669121
https://doi.org/10.1145/1669112.1669121
https://doi.org/10.1109/IPDPS.2018.00038
https://doi.org/10.1109/IPDPS.2018.00038
https://doi.org/10.1007/978-3-319-11454-5_15
https://doi.org/10.1007/978-3-319-11454-5_15
https://www.olcf.ornl.gov/summit/
https://doi.org/10.1177/1094342009106195
https://doi.org/10.1177/1094342009106195
https://doi.org/10.1145/2248418.2248428
https://doi.org/10.1145/2248418.2248428
https://pc2.uni-paderborn.de/about-pc2/announcements/news-events/article/news/supercomputer-noctua-inaugurated/
https://pc2.uni-paderborn.de/about-pc2/announcements/news-events/article/news/supercomputer-noctua-inaugurated/
https://pc2.uni-paderborn.de/about-pc2/announcements/news-events/article/news/supercomputer-noctua-inaugurated/
https://doi.org/10.1007/978-3-642-32820-6_85
https://doi.org/10.1007/978-3-642-32820-6_85

	HetroOMP: OpenMP for Hybrid Load Balancing Across Heterogeneous Processors
	1 Introduction
	2 Related Work
	3 Background
	3.1 TI Keystone-II MPSoC
	3.2 Hybrid Work-Stealing Methodology

	4 HetroOMP Programming Model
	5 Design of HetroOMP Runtime
	5.1 Limitations of HardwareQueue
	5.2 Private Deque Based DSP_WS

	6 Implementation of HetroOMP Runtime
	6.1 Source-to-Source Translation of a HetroOMP Program
	6.2 HetroOMP Code Flow

	7 Experimental Methodology
	8 Experimental Evaluation
	8.1 Total Number of Steals in PvtDeque v/s HardwareQueue
	8.2 Performance Analysis

	9 Conclusion and Future Work
	References




