
HetroOMP: OpenMP for Hybrid
Load Balancing Across

Heterogeneous Processors

Vivek Kumar1, Abhiprayah Tiwari1, Gaurav Mitra2

1 IIIT Delhi, New Delhi, India
2 Texas Instruments, Sugarland, Texas, USA

Outline

•  Introduction
•  Contributions
•  Motivating analysis
•  Insights and approach
•  Implementation
•  Experimental Evaluation
•  Summary

2 HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Accelerator Programming

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Introduction

3

Directive-based

Language-based

Accelerator Programming

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Introduction

4

Pragmas for multicore
programming

Supported on wide range of
processors and accelerators

Supports both data and
task parallelism

Pragmas for
accelerator

programming

Can I use both
multicore and
accelerator
together?

Hybrid Parallelism

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Introduction

5

Mergesort: recursive call with
divide-and-concur parallelism

Mergesort – can I
use both multicore

and accelerator
together?

Multicore Accelerator

Hybrid Parallelism in OpenMP (Attempt #1)

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Introduction

6

1. int THRESHOLD=/*some value*/;
2. void mergesort(int left, int right){
3.  if(right-left > THRESHOLD) {
4.  int mid = left + (left+right)/2;
5.  #pragma omp task untied \
6.  firstprivate(left,mid) hetro(A:N)
7.  mergesort(left, mid);
8.  mergesort(mid+1, right);
9.  #pragma omp taskwait
10.  merge(left, mid, right);
11.  } else {
12.  sequentialSort(left, right);
13.  }
14. }
15. void main() {
16.  #pragma omp target map(to:N) \
17.  map(tofrom:A[0:N])
18.  #pragma omp parallel \
19.  firstprivate(A:N) hetro
20.  #pragma omp single
21.  mergesort(0, size-1);
22. }

No... This will
run only on my

multicores

Mergesort – can I
use both multicore

and accelerator
together?

Multicore Accelerator

Hybrid Parallelism in OpenMP (Attempt #2)

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Introduction

7

1. int THRESHOLD=/*some value*/;
2. void mergesort(int left, int right){
3.  if(right-left > THRESHOLD) {
4.  int mid = left + (left+right)/2;
5.  #pragma omp task untied \
6.  firstprivate(left,mid) hetro(A:N)
7.  mergesort(left, mid);
8.  mergesort(mid+1, right);
9.  #pragma omp taskwait
10.  merge(left, mid, right);
11. } else {
12.  sequentialSort(left, right);
13.  }
14. }
15. void main() {
16.  #pragma omp target map(to:N) \
17.  map(tofrom:A[0:N])
18.  #pragma omp parallel \
19.  firstprivate(A:N) hetro
20.  #pragma omp single
21.  mergesort(0, size-1);
22. }

Mergesort – can I
use both multicore

and accelerator
together?

No... This will
run only on my

accelerator

Multicore Accelerator

Hybrid Parallelism in OpenMP (How?)

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Introduction

8

•  Manually partitioning the workload between
multicore and accelerator?
–  Two different kernels, one each for host and device

•  No serial elision – different behavior if directive disabled

–  What should be the optimal partition size?
•  Host and accelerator have different performance
•  Communication latency between host and device
•  There could be several layers of parallelism (NP-hard)

I can only use either
host or device.. One of
the processing unit will

remain idle..

Research Questions

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Introduction

9

1.  Can we extend OpenMP accelerator model to
support hybrid parallelism without affecting
programmer’s productivity?

2.  Can we design a high performance hybrid
runtime for such an extension?

Contributions
✔ HetroOMP programming model
 Extension to OpenMP accelerator model for enabling hybrid parallelism
 across host and device

✔ Lightweight runtime implementation
 That uses hybrid work-stealing runtime for dynamic load balancing over an

 ARM+DSP based MPSoC

✔ Detailed performance study
 Using several data and task parallel benchmarks

✔ Results
 That demonstrates HetroOMP achieves significant speedup over OpenMP

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019 10

Motivating Analysis

11HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

MPSoC used in this Study: TI Keystone II

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Motivating Analysis

•  Architecture
–  4 ARM + 8 DSP cores
–  Cache coherency among ARM cores
–  No cache coherency among DSPs /

between DSP and ARM
–  Shared memory w/ different address spaces

•  Pointer conversion needed bw. ARM & DSP
–  L1 cache line sizes different at ARM (64

bytes) and DSP (128 bytes)
–  C library for DSPs doesn’t support

concurrency
•  Concurrent hardware queues and hardware

semaphores

12

MPSoC used in this Study: TI Keystone II

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Motivating Analysis

•  Existing programming models
–  OpenMP accelerator model [1]
–  HC-K2H (Habanero C) [2]

•  No serial elision
•  Hybrid ARM/DSP work-stealing scheduler

0

1

2

3

4

OpenMP HC-K2H OpenMP HC-K2H HC-K2H
ARM_Only DSP_Only Hybrid

MergeSort

S
pe

ed
up

 o
ve

r S
eq

ue
nt

ia
l

ex
ec

ut
io

n
(A

R
M

)

Hybrid work-stealing
performance worse

than ARM_Only

[1] Stotzer et al., OpenMP on the
low-power TI Keystone-II ARM/DSP
system-on-chip, IWOMP 2013
[2] Kumar et al., Heterogeneous
work-stealing across ARM and DSP
cores, HPEC 2015

13

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Motivating Analysis

14

MPSoC used in this Study: TI Keystone II
•  Drawbacks in HC-K2H’s hybrid work-stealing

...
ARM

work-stealing
runtime …

DSP
work-stealing

runtime

LIFO steal – poor locality

Concurrent queues –
Either of the ARM or

DSP cores could
directly steal

Cache incoherent
DSPs require explicit
cache write backs at

each task
synchronization

points

FIFO steal by double-ended queue (deque)

Insights

•  OpenMP should support hybrid execution across
host and accelerator

•  Hybrid work-stealing runtime at DSP
–  Should improve locality by supporting FIFO steals
–  Should not perform costly cache writebacks at all task

synchronization points

Motivating Analysis

15HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

•  Hybrid programming
–  HetroOMP programming model

✔ Simple extension to OpenMP accelerator model
✔ hetro clause to define the scope of hybrid execution

•  Hybrid execution using work-stealing
✔ Non-concurrent private deque [1] on L2 cache of DSP

✔ LIFO push and pop, whereas FIFO steals (improved locality)
✔ Sender initiated steal operations at DSP can keep track if thief is

cache coherent
✔ Cache writeback only if a task was sent to a cache incoherent core

Approach

16HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

[1] Acar et al., Scheduling Parallel Programs by Work-Stealing with Private Deques, PPoPP 2013

Implementation

17HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

HetroOMP Programming Model

•  Usage of the clause “hetro”
1.  #pragma omp parallel hetro

•  Indicating the scope of hybrid execution

2.  #pragma omp task hetro(Var1:Count1, ...)
•  Name and count of all writable type share variables

–  Var should only be a pointer type
–  Count is the number of elements (e.g., array size)

3. #pragma omp for schedule(hetro, chunks)
•  Hybrid execution of loop iterations

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Implementation

18

HetroOMP Programming Model

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Implementation

19

1.  
2. void mergesort(int left, int right){
3.  if(right-left > THRESHOLD) {
4.  int mid = left + (left+right)/2;
5.  #pragma omp task untied \
6.  firstprivate(left,mid)
7.  mergesort(left, mid);
8.  mergesort(mid+1, right);
9.  #pragma omp taskwait
10.  merge(left, mid, right);
11. } else {
12.  sequentialSort(left, right);
13.  }
14. }
15. void main() {
16.  #pragma omp target map(to:N) \
17.  map(tofrom:A[0:N])
18.  #pragma omp parallel \
19.  firstprivate(A:N)
20.  #pragma omp single
21.  mergesort(0, size-1);
22. }

Task granularity to
avoid false sharing
between host and

device

“hetro” clause to define the
scope of hybrid execution

“hetro” clause listing the
shared writable variables

•  Parallel Mergesort
that can perform
hybrid execution over
both host and device hetro(A:N)

hetro

int THRESHOLD=omp_cache_grain()/INT_SIZE;

HetroOMP Programming Model
•  Avoiding false sharing

between host and device

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Implementation

20

1.  int THRESHOLD=omp_cache_grain()/INT_SIZE;
2. void mergesort(int left, int right){
3.  if(right-left > THRESHOLD) {
4.  int mid = left + (left+right)/2;
5.  #pragma omp task untied \
6.  firstprivate(left,mid) hetro(A:N)
7.  mergesort(left, mid);
8. 

–  Granularity
• #pragma omp
task

–  Loop tiling
• #pragma omp
for

–  Padding
•  Worst case

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Implementation

21

HetroOMP Runtime

…
DSP

work-stealing
runtime ...

ARM
work-stealing

runtime

•  OMP-to-X [1] translator modified to generate runtime code
•  Hybrid work-stealing runtime

–  ARM work-stealing runtime same as HC-K2H
–  Private deque (L2 cache) based DSP work-stealing runtime

Sender initiated
steals – cache

writebacks only if
task was sent to
cache incoherent

core

Thief requests
DSP to send a task

Improved
locality

[1] Grossman et al., OpenMP as a High-Level Specification Language for Parallelism, IWOMP 2016

Experimental Evaluation

22HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Methodology

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Experimental Evaluation

23

•  Benchmarks
–  Nested task and taskwait

•  Fibonacci
•  Matmul
•  Knapsack
•  MergeSort
•  Heat

–  Parallel for
•  Rodinia suite

–  BFS
–  Hotspot
–  Srad
–  LUD
–  B+Tree

ARM_Only
(4 cores)

DSP_Only
(8 cores)

Hybrid
(12 cores)

OpenMP
HC-K2H

HetroOMP

Runtime & Configurations

Speedup (MergeSort)

0

1

2

3

4

5

6

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Experimental Evaluation

24

ARM_Only DSP_Only Hybrid

S
pe

ed
up

 o
ve

r S
eq

ue
nt

ia
l

ex
ec

ut
io

n
(A

R
M

)

Geomean Speedup (All Tasking Types)

0

1

2

3

4

5

6

7

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Experimental Evaluation

25

ARM_Only DSP_Only Hybrid

G
eo

m
ea

n
sp

ee
du

p
ov

er

S
eq

ue
nt

ia
l e

xe
cu

tio
n

(A
R

M
)

Note: we were unable to run Heat-OpenMP-DSP_Only

Geomean Speedup (All Parallel for)

0

1

2

3

4

5

6

7

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Experimental Evaluation

26

ARM_Only DSP_Only Hybrid

G
eo

m
ea

n
sp

ee
du

p
ov

er

S
eq

ue
nt

ia
l e

xe
cu

tio
n

(A
R

M
)

Note: we were unable to run LUD-OpenMP-DSP_Only

Summary
•  OpenMP accelerator model doesn’t support

hybrid execution across host and device
–  Wastage of CPU resources

•  HetroOMP
–  Simple extension to OpenMP accelerator model for

supporting hybrid execution
–  Uses hybrid work-stealing runtime

•  ARM work-stealing runtime built on traditional design (Cilk)
•  DSP work-stealing runtime uses private deques allocated on

L2 cache instead of inbuilt hardware queues
–  Better locality
–  Fewer cache writebacks for task synchronization

–  Results
•  HetroOMP achieves geometric mean speedup of 3.6x over

default OpenMP accelerator model

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Summary

27

Backup Slides

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

HetroOMP Runtime

HetroOMP: OpenMP for Hybrid Load Balancing | Kumar et al. | IWOMP 2019

Implementation

29

1.  int THRESHOLD=omp_cache_grain()/INT_SIZE;
2. void mergesort(int left, int right){
3. 
4.  #pragma omp task untied \
5.  firstprivate(left,mid) hetro(A:N)
6. 
7.  #pragma omp taskwait
8. }
9. void main() {
10. 
11.  #pragma omp parallel \
12.  firstprivate(A:N) hetro
13. 
14. }

1. int THRESHOLD= DSP_CACHE_LINE / INT_SIZE;

1. finish = new_scope(A, INT_SIZE * N);
2. finish->incoherent_core_stolen = false;
3.  if (ARM_CORE) { /*push task on ARM deque*/ }
4.  if (DSP_CORE) {
5.  /*push task on DSP private deque (on L2)*/
6.  if(/*DSP sending task to DSP/ARM){
7.  finish->incoherent_core_stolen = true;
8.  }
9. }

1.  while (/*tasks pending in current finish*/) {
2.  if(/* tasks available on my deque */) {
3.  if(/*DSP helping DSP/ARM || ARM helping DSP*/){
4.  finish->incoherent_core_stolen = true;
5.  }
6.  /* pop task from my deque and execute*/
7.  } else { /* steal tasks and execute */ }
8. }
9.  if(finish->incoherent_core_stolen == true) {
10.  cacheWBInv(finish->writable_sharedVars());
11. }

1. /*initialize A at device and start hybrid run*/

