PufferFish: NUMA-Aware Work-stealing Library using Elastic Tasks

Vivek Kumar
IIIT-Delhi, New Delhi, India

Abstract—Due to the challenges in providing adequate memory access to many cores on a single processor, Multi-Die and Multi-Socket based multicore systems are becoming mainstream. These systems offer cache-coherent Non-Uniform Memory Access (NUMA) across several memory banks and cache hierarchy to increase memory capacity and bandwidth. Random work-stealing is a widely used technique for dynamic load balancing of tasks on multicore processors. However, it scales poorly on such NUMA systems for memory-bound applications due to cache misses and remote memory access latency. Hierarchical Place Tree (HPT) [1] is a popular approach for improving the locality of a task-based parallel programming model, albeit it requires the programmer to map the dynamically unfolding tasks over a NUMA system evenly. Specifying data-affinity hints provides a more natural way to map the tasks than HPT. Still, a scalable work-stealing implementation for the same is mostly unexplored for modern NUMA systems.

This paper presents PufferFish, a new async–finish parallel programming model and work-stealing runtime for NUMA systems that provide a close coupling of the data-affinity hints provided for an asynchronous task with the HPTs in Habanero C/C++ library (HClib). PufferFish introduces Hierarchical Elastic Tasks (HET) that improves the locality by shrinking itself to run on a single worker inside a place or puffing up across multiple workers depending on the work imbalance at a particular place in an HPT. We use a set of widely used memory-bound benchmarks exhibiting regular and irregular execution graphs for evaluating PufferFish. On these benchmarks, we show that PufferFish achieves a geometric mean speedup of $1.5 \times$ and $1.9 \times$ over HPT implementation in HClib and random work-stealing in CilkPlus, respectively, on a 32-core NUMA AMD EPYC processor.

Index Terms—NUMA; async-finish Programming Model; Work-Stealing;

I. INTRODUCTION

The breakdown of Dennard scaling has put a stop on faster single-core performance, and mainstream processors today are using multicores for achieving better performance. However, modern CPUs are way faster than DRAM. Hence, it is difficult for the processor vendors to maintain low memory latency and high memory bandwidth by stamping many cores onto a single processor. Complex hardware caching mechanisms and on-chip memory controllers can alleviate the situation up to some level, but it also significantly increases the processor manufacturing cost. To get around this problem, modern processors support cross-chip interconnect. It helps bridge several multicore dies and processors (sockets) together in a cache coherent manner, where each unit has its local DRAM and caches. Still, it can also access the memory on the remote units. This architecture is becoming mainstream and is called cache-coherent Non-Uniform Memory Access (NUMA) architecture due to different layers of the memory hierarchy.

Figure 1 represents the NUMA architecture of the AMD EPYC 7551 processor used in this paper for experimental evaluations.

Tasks-based programming models [2], [3], [4], [5], [6] are widely used for writing parallel programs for multicore processors. They rely on an underlying work-stealing [7] runtime for dynamic load-balancing of the tasks exposed by the programmer. Work-stealing uses a pool of worker threads where each worker maintains a local set of tasks (deque). Once a worker (thief) becomes idle, it randomly chooses a busy worker (victim) to steal a task. Random victim selection has been analyzed and shown to achieve a provably good parallel speedup [7]. However, randomly selecting a victim on NUMA systems can adversely affect the performance of a memory-bound application due to cache misses and remote memory access latency. In iterative applications, the locality of random work-stealing can be improved by using runtime profiling either by using trace-replay based constrained work-stealing [8] or by profiling hardware performance counters [9]. However, the trace-replay of random work-stealing does not guarantee to co-locate the task and its data on the same NUMA domain. Likewise, the hardware performance counter-based approach suffers from portability issues as these counters are specific to a particular processor architecture.

Hierarchical Place Tree (HPT) is another popular approach for improving the locality based on programmer’s insights on mapping tasks onto a hierarchical representation of places on NUMA systems [1], [10], [11]. It has been widely adopted across several task-based programming models [12], [13], [14], where each implementation uses some form of hier-
architectural work-stealing where a thief first chooses a nearby victim in the NUMA memory hierarchy before attempting a remote steal. A limitation of this technique is that it can work well only if the work-load is evenly partitioned across all the places in the NUMA system. Otherwise, it can cause starvation. The programmer’s insights on mapping tasks can work well for applications with regular execution Directed Acyclic Graph (DAG). Still, it is challenging to determine an optimal partitioning a priori for applications with irregular execution DAG. If a DAG has the same branching degree for all its non-leaf nodes, then it is a regular DAG and an irregular DAG in different branching degrees.

This paper explores a simple and straightforward approach for NUMA-aware work-stealing called PufferFish that does not use any runtime profiler and improves the locality of both regular and irregular DAGs. PufferFish extends the traditional async–finish programming in the HClib library [4] by allowing the programmer to provide data-affinity hints [15] in an async instead of mapping a task to a place in an HPT. PufferFish uses a novel hierarchical work-stealing algorithm that parses these hints and dynamically decides the task’s optimal execution location. This location could either be a particular worker, a group of workers inside a NUMA domain, or a locality-free location. For improving the locality of tasks within a place, it introduces a hierarchical implementation of elastic tasks [16], called Hierarchical Elastic Task (HET). HET operates only at leaf places in an HPT that corresponds to shared caches (e.g., L3). Once a worker pulls a task into a leaf place, that task shrinks itself into a sequential task such that it can run only on that particular worker. Whenever load-imbalance arises at a leaf place, HET running on other workers in that same leaf place expands itself into parallel tasks for balancing that specific place’s workload. We choose a set of widely-used micro-benchmarks and a real-world application and implement regular and irregular DAG versions to study the performance benefits of PufferFish on a modern NUMA processor. We show that PufferFish performs significantly better than the random work-stealing implementations in HClib (Section II-A) and CilkPlus [6].

In summary, this paper makes the following contributions:

- PufferFish, a new async–finish task-based parallel programming model for NUMA systems that integrates data-affinity hints with an HPT implementation.
- A novel hierarchical work-stealing runtime for PufferFish with the support for Hierarchical Elastic Tasks that improves the locality by shrinking itself to run on a single worker inside a place, or by puffing up across multiple workers depending on the work imbalance at a particular place in an HPT.
- Performance evaluation of PufferFish compared to HClib and CilkPlus on a 32-core NUMA AMD EPYC 7551 processor using regular and irregular execution DAGs in four popular memory-bound applications.

The rest of the paper is structured as follows. Section II provides the relevant background. Section III motivates and explains the PufferFish programming model. Section IV explains the design and implementation of PufferFish work-stealing runtime. Section V discusses our evaluation methodology. Section VI discusses the performance evaluation of PufferFish. Section VII explains the related work and finally section VIII concludes the paper.

II. BACKGROUND

This section provides a brief overview of the async–finish parallel programming model supported by Habanero C/C++ library and its work-stealing runtime (Section II-A) and the Hierarchical Place Trees implementation in HClib (Section II-B).

A. HClib Library

The Habanero-C/C++ library (HClib) [4] offers an async–finish programming model for exploiting shared memory parallelism. These constructs were first coined by X10 language [17]. Now it has been adopted by several other frameworks supporting task parallelism [18], [19]. Its variants are also supported in other popular frameworks [20], [2].

- **async–finish programming model**: HClib is a native library-based implementation of the Habanero programming model that offers C and C++ APIs. It provides high productivity in writing async–finish programs by making heavy use of C++11 lambda functions in its APIs. C++11 lambdas avoid the need for compiler support while still retaining the syntactic convenience of language-based approaches. Figure 2 shows a sample code written by using async–finish APIs supported by HClib. Both these APIs accept a C++11 lambda function as an argument. The async API creates a task S1, which can run in parallel with the following statements, i.e., S2. An async is a powerful primitive because it can be used to enable any statement to execute as a parallel task, including statement blocks, for-loop iterations, and function calls. finish is a generalized join operation. Method S3 will never execute until both S1 and S2 have completed. The power of these constructs comes from the ability to nest async and finish arbitrarily. Due to its simple programming interface, HClib is also used for teaching an introductory parallel programming course at IIIT-Delhi (CSE502).

```cpp
1 void foo(int n) {
2   int a,b;
3   hclib::finish([&a,&b,n]() { //start finish scope/
4     hclib::async([&a,n]() { //start async scope/
5       a = S1(n);
6     });
7     b = S2(n);
8   }); //end async scope/
9   S3(a,b);
10 }); //end finish scope/
Fig. 2. An example of async–finish programming using HClib. async denotes a task that could run in parallel to other tasks and finish denotes synchronization point for parallel tasks created within its scope.
```
for two XML files for representing the memory hierarchy of the AMD processor shown in Figure 1 in two different ways. In this paper we have used the implementation shown in Figure 4(a). If an XML file is not provided, HClib assumes a flat memory hierarchy (single place). Runtime will read this XML file at the program launch and model the affinity as a tree of places, thus the name Hierarchical Place Trees (HPT). The choice of a particular representation of hierarchy often depend on the application, and the desired trade-off between locality and load balance for a given task. Allowing the programmer to specify this configuration in a flexible way is an added advantage.

Each place in an HPT will contain a deque for each worker for lock-free push and pop operations. Although synchronization is required for steal. Any worker can push a task at any place using an API “async_at(place_id, lambda)”. This has a downside that the programmer is required to specify the place hint with each async_at tasks. This is challenging for recursive parallel programs. For preserving the locality, HPT restricts the pop and steal at a place only to the workers in the child nodes of this place in HPT. For example, in Figure 3, worker W0 will first pop from place P5, followed by place P1 and place P0, respectively. If it failed in pop, it would attempt to steal from these same places in the same order. This helps in achieving locality among the tasks that share some data. HClib runtime ensures that the worker threads are bounded to the appropriate core id for avoiding thread migration.

III. PUFFERFISH PROGRAMMING MODEL

We had to ensure that PufferFish preserves the serial- elision [20] as much as possible. The basic async-finish programming model in HClib supports this property that is removing all parallel APIs results in a valid sequential program. It is otherwise hard to achieve by using a programmer’s insights on mapping tasks on a NUMA system. To achieve this goal, PufferFish extends the async-finish programming supported by HClib with two sets of new APIs:

• NUMA-aware memory allocations: The programmer should first allocate the arrays accessed inside a parallel region by using
1 #include <hclib.hpp>
2 using namespace pufferfish;
3 int A;
4 // recursive merge generates two async_hinted */
5 void merge(int L1, int H1, int L2, int H2);
6 void sort(int L, int N) {
7 if (N < LIMIT) return seq_sort(L, N);
8 int Q = N/4;
9 finish(=[()](A, L, L+Q-1, =>()) {
10 sort(L, Q);
11);
12 async_hinted(A, L, L+Q-1, =>()) {
13 sort(L+Q, Q);
14 });
15 async_hinted(A, L, L+Q, L+2*Q-1, =>()) {
16 merge(L, L+Q-1, L+Q, L+2*Q-1);
17 });
18 async_hinted(A, L+Q, L+2*Q-1, =>()) {
19 merge(L+Q, L+2*Q-1, L+2*Q, L+N-1);
20 });
21 finish(=[()](A, L+2*Q, L+N-1, =>()) {
22 sort(L+2*Q, Q);
23 });
24 finish(=[()](A, L, L+Q-1, =>()) {
25 merge(L, L+Q-1, L+Q, L+2*Q-1);
26 });
27 async_hinted(A, L+2*Q, L+3*Q-1, =>()) {
28 merge(L+2*Q, L+3*Q-1, L+3*Q, L+N-1);
29 });
30 finish(=[()](A, L+3*Q, L+N-1, =>()) {
31 sort(L+3*Q, Q);
32 });
33 merge(L, L+2*Q-1, L+2*Q, L+N-1);
34 }
35 int main(int argc, char** argv) {
36 launch([()](A, L, L+2*Q-1, =>()) { });
37 A = numa_alloc_blockcyclic<int>(N);
38 initialize(A);
39 sort(G, N);
40 numa_free(A);
41 });
42 }

Fig. 5. Recursive CilkSort benchmark parallelized using PufferFish programming model. Underlined APIs are specific to PufferFish.

numa_alloc_blockcyclic<T>(count) and numa_alloc_interleave<T>(count) APIs.

In this prototype implementation of PufferFish we currently support one-dimensional arrays only. numa_alloc_blockcyclic block-cyclic performs distribution of the physical pages over NUMA nodes with block size as num_pages/num_numa_nodes. numa_alloc_interleave performs a round-robin distribution of physical pages across all NUMA nodes. numa_free API is used for freeing the memory. All these APIs are wrappers over libnuma library [24].

- **Providing data-affinity hints:** An async_hinted API is used for this purpose that is otherwise a regular async. It is a variadic function that accepts a variable number of affinity hints. Each hint is a pair of three variables in the following order: pointer to the start index of the array allocated using numa_alloc.blockcyclic and numa_alloc_interleave APIs, start and the end indices in this array touched by this task. The last parameter to async_hinted is the lambda task. The programmer should judiciously pass the data-affinity hints for achieving good performance. If an async_hinted

operates on different arrays allocated using the same API, of the same datatype and on the same index range, then hint should be provided only for one of the variety.

To further motivate PufferFish, we show its usage in Figure 5 using a recursive CilkSort program used in our experimental evaluations (Section V). This program generates an irregular execution DAG as each vertex’s degree in the DAG is not the same. To understand programmer-based partitioning challenges, consider two different NUMA systems, namely System-A having two NUMA nodes, and System-B having four NUMA nodes. There are three sets of async-finish scopes at the top-level that requires partitioning by the programmer: a) Region-1 inside sort method with four parallel tasks (Lines 9– 22), b) Region-2 inside sort method with two parallel tasks (Lines 24– 31) and c) Region-3 inside the merge method with two parallel tasks (hidden in Figure 5). Partitioning the Region-1 is easy for both the systems. However, it is challenging to partition the Region-2 and Region-3 evenly over System-B without modifying the above algorithm. Programmer-based top-level partitioning will also break the serial-elision. PufferFish overcomes this limitation by relying on data-affinity hints from the programmer instead of top-level task partitioning. Except for the numa_alloc_blockcyclic (Line 37) and numa_free (Line 40) APIs, it supports the serial-elision property. Removing the lambda function APIs for finish, async_hinted, and launch will recover the sequential implementation of CilkSort.

IV. DESIGN AND IMPLEMENTATION

In this section, we describe our implementation of PufferFish that is based on HClib work-stealing library (Section II-A). Our implementation and the benchmarks are released open source online on GitHub [25].

At a high-level, PufferFish implementation first uses the data-affinity hints provided in an async_hinted for finding the place id in an HPT that contains most of the physical pages for the memory accessed in this task (Section IV-B). The async_hinted is then pushed at the current worker’s deque at that place. When a worker become idle, it would attempt to grab a task using hierarchical work-stealing that improves the default implementation in HClib by reducing starvation (Section IV-C). For minimizing the loss in locality arising due to context switches at every task execution, PufferFish uses a hierarchical elastic task implementation of async_hinted that can inflate or deflate its recursive parallelism depending on the place load (Section IV-D).

A. NUMA memory manager

PufferFish has a NUMA memory manager that is built over libnuma library. It currently supports block-cyclic (total NUMA node number of blocks) and interleave allocation of a contiguous chunk of memory. Each allocation stores a pointer to the allocated memory, size of the datatype, allocation length, and the type of distribution. This information is used for mapping an array access range to its physical pages.
the programmer to specify the place of execution. A worker can thus create a task in any place. This is not true in PufferFish as its worker schedules an async_hinted on HPT based on the data-affinity hints (Section IV-B). For example, worker W0 shown in Figure 7 can push async_hinted only at place P0, P2, P3, P4, and P5. It cannot push at P1 (Figure 6, Line 23). A pop from P2–P4 would break the data-affinity hints. The place P0 contains tasks whose locality is not yet determined. In contrast, place P1 and P6 may already contain tasks pushed by other workers guaranteed to have data-affinity to the NUMA node of worker W0.

b) steal implementation: PufferFish does not follow the steal path of HClib as it can cause load-imbalance. Consider two async_hinted tasks T1 and T2 available at the place P1 shown in Figure 7. Both T1 and T2 are recursive tasks containing two and four async_hinted, respectively (affinity to P1). T1 is stolen by the thief W0, whereas the thief W4 steals T2. As the affinity of child tasks of T1 and T2 are at place P1, W0 would push two-child tasks of T1 at place P5, whereas W4 would push four child tasks of T2 at place P6. Clearly, following the steal path of HClib would create load-imbalance across P5 and P6. Worker W0 in PufferFish avoids this by always attempting its steal from a place in the fixed order of P5, P1, P6, and finally from P0. W0 tries to steals from P1 before P6 for avoiding the cache misses at P6. It attempts to steal from P0 in the end as P0 only contains the tasks with unresolved affinity. Thieves in PufferFish attempt to steal from a place only after checking a boolean flag on that place that indicates whether this place is idle or busy. This is to avoid the overhead of iterating over the O(n) number of deque at an idle place. The thief who fails to steal from a place the first time would flip the flag to false, which would be set to true only when a victim push a task at this place.

D. Hierarchical Elastic Tasks

Recall from Section II-A, every task in HClib is executed after a context switch. This hampers the locality. To reduce these context switches, async_hinted in PufferFish acts as a Hierarchical Elastic Task (HET) that can shrink or puff up its parallelism depending on the place of execution in HPT. If an async_hinted is executing at the logical root place P0 in Figure 7 or at NUMA node place P1, P2, P3, and P4, it behaves normally without changing its parallelism. When a worker at a leaf place, e.g., W0, pulls it to place P5, it first checks if there is any load imbalance at place P5, i.e., if there was any failed steal attempt. If all the workers W1–W3 are busy, then W0 will shrink the parallel async_hinted task into a sequential task for preserving its locality by avoiding context switches. This sequential task is then directly executed by W0 without further any push operations at its deque in place P5. It will continue doing this until a failed steal is registered at place P5. In that case, W0 will temporarily resume the parallel execution of

B. Mapping data-affinity hints to place in HPT

Figure 6 shows the pseudocode of the method find_place used inside an async_hinted for finding the optimal place for execution, i.e., the place containing the maximum number of physical pages of the memory accessed inside an async_hinted. We first iterate over all the hints provided by the user (Line 4), and for each hint, we calculate the NUMA nodes that contain the physical pages for start and end indices of the array access (Lines 7–17). NUMA memory manager APIs get_blockSize and get_pageID assist in this calculation. This iteration is aborted if half of the hints are for memory ranges spanning over multiple NUMA nodes (Line 18). In this case, the logical root is returned as the optimal place (Line 21). For a recursive program, this would frequently happen at the start of recursion. If the iteration completed successfully, the runtime would shortlist the NUMA node containing the maximum number of pages (Line 22). If this node is the home NUMA node of the current worker (Line 23), the optimal place of execution is the worker’s leaf place (L3 cache), else the remote DRAM place (Line 24).

C. Hierarchical Work-Stealing

Figure 7 shows the Hierarchical Work-Stealing (HWS) in PufferFish that is a modification of HClib’s implementation of hierarchical pop and steal. Similar to HClib, PufferFish also uses total worker count number of deque at each place. We refer to the HPT shown in Figure 7 for explaining HWS, but PufferFish can work with other HPTs as well.

a) pop implementation: Unlike HClib, a victim in PufferFish do not attempt to pop from all its parent place if it fails to pop from its leaf place. Recall from Section II-A, the HPT programming model in HClib requires
async hinted by pushing a few tasks to its deque on place P5. It will continue this cycle of shrinking and puffing the parallelism in async hinted until it becomes a thief again.

V. EXPERIMENTAL METHODOLOGY

Before presenting the evaluation of PufferFish, we first describe our experimental methodology.

We have targeted four widely-used benchmarks for our experimental evaluations. We chose these benchmarks as they have been used in several prior works. Table V describe these benchmarks and their respective configurations used in our experimental evaluations. These benchmarks differ in terms of their memory access density and default support for locality. Also, the sequential overheads [19] in these benchmarks are negligible on HClib. Further, we created two different implementations of LULESH, SOR, and SRAD benchmarks. Originally these benchmarks contain for-loop parallelism. We followed the technique described in work by Chen et al. [9], [28], and converted this loop-level parallelism into regular and execution DAG, as shown in Figure 8.

Five different versions of each benchmark were used: a) HClib implementation that uses async-finish APIs and uses random work-stealing, b) CilkPlus implementation that uses cilk_spawn-cilk_sync APIs and also uses random work-stealing, c) PufferFish implementation that uses async hinted-finish APIs with data-affinity hints, and uses PufferFish implementation of hierarchical work-stealing (Section IV), d) HClib (HPT DA) implementation that uses async hinted-finish APIs with data-affinity hints, but use default HPT implementation of HClib for hierarchical work-stealing (Section II-B), and e) Sequential implementation obtained by using serial-elision. We evaluated HClib and CilkPlus implementation by using both first-touch policy in Linux and interleave allocation policies supported by numactl library. First-touch policy in HClib and CilkPlus are reported as HClib (FT) and CilkPlus (FT), respectively, whereas interleave allocation policy is reported as HClib (IL) and CilkPlus (IL), respectively.

The GCC compiler version was 7.5.0. We used the CilkPlus version (libcilkrt5) shipped with this GCC compiler. HClib implementation used in this paper is down-
loaded from its official github repository with the commit id ab310a0. We used -O3 flag for compiling our benchmarks. The benchmarks were run on a 32-core AMD EPYC 7551 processor. Maximum and minimum frequency of this processor is 2GHz and 1.2GHz, respectively. We preserved the default settings of the system with the CPU governor policy set to ondemand. This machine had a total of 64GB of RAM. The operating system was Ubuntu 18.04.3 LTS. Each implementations were executed ten times, and we report the mean of the execution time, along with a 95% confidence interval.
VI. EXPERIMENTAL EVALUATION

A. Performance Analysys

Figure 9, Figure 10, Figure 11, and Figure 12 shows the speedup obtained by executing different implementations of CilkSort, LULESH, SOR, and SRAD, respectively, over two and four NUMA nodes. Geomean speedup obtained in CilkPlus (FT), CilkPlus (IL), HClib (FT), HClib (IL), HClib (HPT_DA), and PufferFish over the Sequential implementation by using four NUMA nodes was 8.8x, 13.3x, 11.2x, 14.2x, 11x, and 17x, respectively. A similar trend holds even with two NUMA nodes. PufferFish wins over each implementation in both the NUMA settings. As expected, interleave allocation policies in CilkPlus and HClib performs significantly better the first-touch policies in respective implementations. As both these implementations use random work-stealing, spreading the physical pages of the memory in round-robin over the NUMA nodes improves the performance. HClib wins over CilkPlus implementation in both these allocation policies.

An important point to observe is that the HClib (HPT_DA) performs even poor than HClib (FT) and HClib (IL). Recall from Section V, HClib (HPT_DA) uses the same programming interface as in PufferFish but uses the default hierarchical work-stealing in HClib. As described in Section II-B, it is challenging to use async_at interface in HClib in recursive benchmarks. Hence, for HClib (HPT_DA) we used async_hinded with data-affinity hints to map the tasks to optimal place in HPT, but used HClib’s default hierarchical work-stealing. We carried out this experiment to study the performance of PufferFish’s novel hierarchical work-stealing implementation (Section IV-C) that internally uses hierarchical elastic tasks (Section IV-D). This analysis clearly shows that the PufferFish parallel programming model is a simple and scalable solution for NUMA-aware work-stealing. HClib (HPT_DA) show poor performance due to worker starvation (Section IV-C).

B. Analysys of Hierarchical Elastic Tasks (HET)

PufferFish uses HET implementation (Section IV-D) of async_hinded for reducing the context switches for task execution at the leaf place (L3 in our case). Figure 13 shows the ratio by which PufferFish was able to reduce the number of async_hinded in each benchmark as compared to HClib (HPT_DA). Both these implementation uses the same programming interface, but different work-stealing implementations. We can observe that HET in PufferFish reduces the task creation by up to 95% and 90% in two and four NUMA node settings. Its effect in LULESH and LULESH-ir is minimum because this benchmark has pipeline parallelism, and it generates coarse granular tasks at each stage in the pipeline. HET shows better performance with the benchmarks having fine granular tasks.

Fig. 13. Total number of async_hinded created in PufferFish relative to HClib (HPT_DA)

Fig. 14. L2-cache misses relative to HClib by using four NUMA nodes

Fig. 15. L3-cache misses relative to HClib by using four NUMA nodes

Fig. 16. Package energy relative to HClib by using four NUMA nodes
CilkPlus (IL) hugely benefiting from the temporal locality. This is the reason they achieve higher speedup even with CilkSort. LULESH variants exhibit higher DCRR and DCMR. This is due to the design of this benchmark. LULESH also operates in iterations, but each iteration has 24 parallel regions operating on a wide range of arrays (total 78 arrays allocated using numa_alloc_blockcyclic API). Hence, the locality benefit in LULESH is lesser than other benchmarks, thereby resulting in lesser speedups.

VII. RELATED WORK

The performance of a memory-bound task-based parallel program can be improved on a NUMA system by following a two-step procedure: Step-1 spreading the physical pages of the entire memory that a program would access over all the NUMA nodes, and Step-2 scheduling the tasks on the NUMA node that contains the physical pages of the memory accessed by this task. Libraries such as libnuma [24] on Linux provide a rich set of APIs to achieve the Step-1. However, Step-2 is challenging to achieve due to the dynamic creation of tasks. Asking the programmer to perform the top-level partitioning of tasks across NUMA nodes is a popular choice for achieving the Step-2 [22], [23], [1], [10], [13], [12]. This step can also be achieved automatically in an iterative application by profiling its iterations and using these profile results to map tasks in remaining iterations on appropriate NUMA node [9], [28]. Once the top-level task partitioning is done in Step-2, a common approach to preserving the task’s locality is by using some flavor of hierarchical work-stealing. Thieves in HotSLAW [30] steal a small number of tasks or half of the victim’s deque tasks based on how near or how far away the victim is from this thief in NUMA hierarchy. Thieves in [31] steal directly from victims under the same NUMA hierarchy and rely on a team leader for pursuing remote steals to reduce the cost of remote latency. NUMA work-stealing in Cilk [12], and Intel TBB [13] used a combination of worker local deque and mailbox [32]. Steals within a NUMA domain are performed from worker’s local deque, whereas the mailbox is used to push tasks with affinity to a different NUMA node. User-specified top-level partitioning of tasks usually works well with programs exhibiting regular execution DAG, but it is challenging to evenly partition the dynamically unfolding tasks in a program exhibiting irregular execution DAG.

Huang et al. proposed a data-affinity clause with OpenMP as a natural way to map the tasks than HPT to overcome this limitation. This approach was further studied in [34], [14], and is now incorporated in the latest OpenMP 5.0 standards [15]. A common limitation across all these studies is they don’t propose a scalable NUMA-aware work-stealing implementation for these tasks. PufferFish overcomes this limitation by introducing a new async-finish programming model that integrates the data-affinity hints with an HPT implementation in HClib and supports a scalable hierarchical work-stealing implementation.

Sbîrlea et al. introduced elastic tasks for improving the locality of random work-stealing [16]. They introduced a new async API that required input from the user about the amount of work and parallelism in that task. This information was then
used by the runtime to run on a single worker or expand to take over multiple workers based on the system workload. PufferFish took inspiration from them and implements Hierarchical Elastic Tasks (HET) that do not require any extra input from the user. HET activates itself hierarchically based on the level of a place it is attached to in an HPT.

Recently proposed ADWS [35] expects the programmer to specify the amount of work in each task and uses this information for deterministic task allocation over workers. It further uses a hierarchical work-stealing for improving the NUMA locality. Drebes et al. utilized the data dependency information in a data-flow programming model to decide the NUMA aware task placement [36], [37]. PufferFish is somewhat similar to their work in the sense that it relies on explicit data-affinity hints instead of implicitly derived hints.

VIII. CONCLUSION

Multicore processors based on NUMA architecture are now mainstream and poses enormous challenges in achieving a good performance in memory-bound task-parallel programs. Existing solutions rely on programmer-based approaches for distributing the tasks evenly across all NUMA nodes. This architecture-specific optimal partitioning is hard to achieve in a dynamically unfolding task-based parallel programming model. An orthogonal approach to solve this problem is assigning data-affinity hints with the parallel tasks instead of implicitly derived hints. In this paper, we designed and implemented a new async-finish programming model for specifying data-affinity hints. It builds over existing solutions, but significantly improve the performance by using a novel NUMA-aware work-stealing runtime. Our empirical results demonstrate that we can achieve better performance on a NUMA system than traditional approaches for task parallelism.

REFERENCES