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Abstract

The use of a work stealing scheduler has become a popular ap-
proach for providing task parallelism. It is used in many modern
parallel programming languages, such as Cilk and X10, which have
emerged to address the concerns of parallel programming complex-
ity on modern multicore architectures.

There are various challenges in providing an efficient imple-
mentation of work-stealing, but in any implementation it must be
possible for the thief to access the execution state required to per-
form the stolen task. The natural way to achieve this is to save the
necessary state whenever a producer creates stealable work. While
the ability to provide some degree of parallelism may dominate per-
formance at scale, it is common for the vast majority of potentially
stealable work to never actually be stolen, but instead processed by
the producer itself. This indicates that to further improve perfor-
mance we should minimize the overheads incurred in making work
available for stealing.

We are not the only ones to make this observation, for example
X10’s current C++ work-stealing implementation stack-allocates
state objects and lazily copies them to the heap to avoid unneces-
sary heap allocation during normal execution. In our context of a
Java virtual machine, it is possible to extend this idea further and
avoid heap allocating state objects, but instead allow thieves to ex-
tract state directly from within stack frames of the producer. This
is achieved by using state-map information provided by a coopera-
tive runtime compiler, allowing us to drive down the cost of mak-
ing state available for stealable work items. We discuss our design
and preliminary findings for the implementation of our framework
inside X10 work-stealing runtime and the optimizing compiler of
Jikes RVM, a high-performance Java research virtual machine.

1. Introduction

Modern computer systems increasingly feature multicore comput-
ing units with deep memory hierarchies. Current object oriented
languages such as Java are showing their age—particularly in the
face of distribution, parallelism, and heterogeneity—all of which
are rapidly becoming fundamental concerns. The new ubiquity of
distribution, parallelism and heterogeneity has narrowed once dis-
tinct requirements, leading to the development of new languages
such as X10 [7], Chapel [5], Fortress [1] and Cilk [8].
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In modern parallel programming languages, the programmer
exposes potential parallelism, leaving the runtime system responsi-
ble for scheduling tasks efficiently on the hardware. Scheduling al-
gorithms based on Cilk’s work-stealing scheduler provide dynamic,
lightweight task parallelism, and are used by almost all modern par-
allel programming languages.

While work stealing has proven a valuable technique to ex-
ploit potential parallelism, it can come at a significant cost to the
throughput of individual threads. This paper focuses on driving
down this cost by reducing the overhead of ensuring all relevant
state (such as that stored in global and local variables) is available
to a potential thief at every steal point. For many applications, only
a very small minority of potential steals is actually made, suggest-
ing that where possible the cost of extracting state (from victim to
thief) should be borne when a steal is made, and any unconditional
penalties placed on the victim should be minimized.

The cost of making the state available is highly dependent on
key implementation decisions. To our knowledge the implementers
of modern parallel languages have taken the following implemen-
tation paths: 1) translation of application code into a low-level lan-
guage such as C or C++ and compile with a runtime system imple-
mented in C or C++; and/or 2) translation of application code into
a high-level managed language such as Java. To implement work-
stealing where the language is implemented by translation to C or
C++, it is possible to compile a modified version of the code that
maintains state within stack-allocated objects that may be copied
to the heap at steal time. This is the approach taken by the existing
C++ X10 work-stealing runtime. If the language is implemented by
translation to a memory-safe high-level language such as Java, this
approach is not possible, and so a straightforward implementation
would instead revert to heap-allocating all stealable state. The ques-
tion of what could be done along the lines of the stack-allocated
object solution for C++ in the context of a modified Java virtual
machine to support work stealing was the starting point for this
work.

While the cost of allocating objects in Java may be significant,
both of these implementation approaches can negatively affect the
performance of application code because the code and data lay-
out must both be restructured to allow for the possibility of work
stealing, defeating various compiler optimizations. Since all rele-
vant program state must be contained in either the hardware reg-
isters or the stack of the work-stealing victim, given the aid of a
cooperative compiler it should be possible to map and then extract
all state from the stack of the victim with only minimal changes to
the executing code. This paper discusses preliminary work on the
path to this goal.

Our implementation is based on the Java version of X10, and
uses a modified version of Jikes RVM [2] to assist with extracting
execution state. In this modified version a Java thread can force
other running Java thread to yield and can copy relevant stack



frames from the other thread’s Java stack onto its own stack. It can
then walk on those stolen frames and retrieve the required execution
states.

The rest of the paper is structured as follows. Section 2 discusses
related work. Section 3 provides relevant background on X10 and
Jikes RVM. Section 5 explains the design of our Jikes RVM sup-
ported X10 work-stealing framework. Section 6 discuss the perfor-
mance gain obtained over Fibonacci benchmark with our prelimi-
nary implementation. Finally, Section 7 concludes the paper.

2. Related Work

Load balancing is a challenging problem that has been well studied
in the literature. Work-stealing has been used as a heuristic since
Burton and Sleep’s research [4] and Halstead’s implementation of
MultiLisp [11]. Blumofe et al. defined the fully-strict computa-
tion model and proposed a randomized work stealing scheduler
with provable time and space bounds [3]. An implementation of
this algorithm with compiler support for Cilk was presented in [8].
There have been several published algorithms since then for work-
stealing, all adhering to the strong semantics. Fork-Join (FJ) is a
java framework for recursively dividing the tasks into subtasks and
is based on Cilk like work-stealing [12]. We have described the
key difference between FJ and X10 work-stealing in section 3.3.
Among recent work, Guo et al. implemented and evaluated work-
first and help-first work-stealing policies [9]. However, their imple-
mentation saved execution state in heap-allocated frames. In later
work, they also demonstrate an adaptive approach of choosing be-
tween work-first and help-first policies [10]. Zhao et al. presented
the compiler transformation techniques for eliminating redundant
task creation/termination and synchronization operations in task-
parallel languages [10]. Wang et al. propose an adaptive task cre-
ation strategy for work-stealing that reduces the number of tasks
created and provides a better control of the task granularities [13].
Instead of reducing the number of tasks created for effective work-
stealing, our work attempts to reduce the cost of making work items
available for stealing.

3. Background

In this section we will first briefly summarize the X10 language’s
finish-async parallel programming model, followed by the current
implementation of the X10 work-stealing runtime with the help of
Frame objects. We then briefly discuss about how the application
states are extracted from its live stack frames.

The X10 work-stealing runtime described here is publicly avail-
able as part of X10, and to our knowledge the details of its imple-
mentation have not been published. This paper describes the work-
stealing runtime available in the X10 Subversion head from release
20276 (X10 2.0). We do not claim the X10 work-stealing runtime
as a contribution, but describe it in detail to assist with our expla-
nation of the modifications made inside Jikes RVM to enable state
extraction.

3.1 X10 finish-async Parallel Programming Model

X10 is a type-safe, modern, parallel, distributed object-oriented
language developed by IBM as a part of the DARPA High Produc-
tivity Computing Systems (HPCS) program. It can be thought as
an extension and modification of Java. X10 is generic, removes
Java’s concurrency, arrays and built-in types and adds places,
activities, clocks, distributed multi-dimensional arrays and value
types. Places make distribution explicit: each place can be thought
as a virtual, architecturally homogeneous, shared memory multi-
processor.

X10 has asynchronous activities as a foundation for lightweight
‘threads’ that can be created locally or remotely. In X10 an asyn-
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public static def fib(n:int) {

if (n<=2) return 1;

val fl:int;

val f2:int;

finish {
async { fl = fib(n-1); }
f2 = fib(n-2);

}

return f1 + £2;

}

Figure 1. Sample X10 code

chronous activity is created by a statement async (P) S where P
is a place expression and s is a statement. The statement async S
is treated as shorthand for async (here) S, where here is a con-
stant that stands for the place at which the activity is executing [6]
(X10 2.0). The execution of a statement by an activity is said to
terminate locally when the activity has finished all the computa-
tion related to that statement and a statement is said to terminate
globally when it has terminated locally and all activities that it may
have spawned (if any) have, recursively, terminated globally. The
statement finish S in X10 converts global termination to local
termination. £inish S terminates locally (and globally) when s
terminates globally. If s terminates normally, then £inish S ter-
minates normally and a continues execution with the statement af-
ter finish S.

The activities in X10 can always launch another child activity.
If there is the same governing finish for a parent and child activity
then either of these parent and child activity can terminate in any
order. This level of asynchrony is very useful in divide and conquer
algorithms since this allows the X10 runtime to execute the sub-
computations at different levels of the divide-and-conquer tree to
execute in parallel without forcing synchronization at the parent-
child level.

3.2 X10 Runtime Work-Stealing Scheduler

Although X10 is a distributed language, we are only dealing with
the single place execution of X10 i.e. only over one node and hence,
whenever we mention parallelism below, we mean at single node
level.

In a work-stealing scheduler, the total number of worker threads
is equal to the total number of available processors. The thread
producing the tasks is called victim and the thread consuming the
tasks i.e. stealing the tasks is called thief. Each worker thread has
a double-ended queue, called as deque in which, they maintain the
extra tasks to be stolen by the thief. All the points in the program
where a victim pushes a task into its deque is called a steal point
and the computation that the thief resumes after the steal is called
as the continuation of the original computation.

X10 work stealing is composed of two stages. The first being
the source to source code transformation (mostly to synthesize con-
tinuation for steal points) and a runtime. Whenever an activity is
launched by an async, the statements following this async block
are always left to be stolen by thief threads (assuming the async
and the statement both have the same governing £inish). In Fig-
ure 1 line 7 is a steal point. A thief can steal this continuation and
can execute in parallel. But for any thief to steal the continuation,
the execution states must be saved by the victim thread before ex-
ecuting line 6. For this, the victim saves its local execution states
inside heap allocated class object, which also has a field for the
program counter to help the thief resume the computation from the
correct place.

Whenever a thread is idle, it becomes a thief and attempts
to steal work from another thread’s deque. The thieves always
steal work from the top of other thread’s deque. On the other
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Figure 2. Pseudocode generated for X10 work-stealing runtime

hand, the threads push and pop their work from the bottom of
their own deque. Assuming thread-1, which was idle, steals the
object reference to the steal point at line 7 from thread-0’s deque.
Thread-1 starts with a copy of the computation at line 7 with
modification at the beginning to restore the execution state i.e.
with proper initialization of all local variables. Thread-0 is now
a victim and thread-1 is its thief. When the victim returns after
executing line 6, it first checks if the steal point that it pushed
before the async at line 6 has been stolen. It finds that the frame
was stolen. If by this time thread-1 has not yet completed the
continuation then thread-0 becomes a thief itself, otherwise thread-
0 will combine its calculation with that from thread-1 and will
complete the computation from line 8.

This method of executing the async before executing the con-
tinuation following the async block, is called as the work-first pol-
icy since a thread goes on to do its work (in an async) first, as in the
case of serial execution [9]. The current work-stealing scheduler in
X10 is based on this work-first policy.

3.3 Comparison to the Fork-Join Framework

The Fork-Join framework (FJ) [12] is a Java framework in which
problems are solved by (recursively) splitting them into subtasks
that are solved in parallel, waiting for them to complete, and then
composing results [12]. This methodology is very similar to what
X10 tasks tries to achieve. However, in FJ, the user has to write his
code such that it has the calls to the work-stealing framework, but
in X10 the code generation phase automatically take care of this.
The user simply expresses the parallelism in terms of async and
finish block and the X10 runtime calls to work-stealing scheduler
is inserted during the codegen pass. This also means the user does
not have to worry about task dependencies in X10. FJ has a gran-
ularity parameter that represents the point at which the overhead
of generating tasks outweighs potential parallelism benefits. This
is currently not implemented inside X10 work-stealing runtime.

3.4 X10 Frame Objects

The X10 work-stealing runtime creates a frame class for each
program scope. Each frame class contains the following - fast
method for normal execution, resume method for continuing the
execution after the steal (at given PC), back method for returning
from callee (at given PC), pointer to the parent frame (up field),
fields for local variables and result field if non-void method. The
frames are of three types - Regular frame, Async frame and Finish
frame.

Figure 2 shows how the X10 work-stealing runtime expands the
input source code in figure 1 in terms of the frame classes. The
fast method represents the fast path which a thread executes until
its frames are stolen. The steal points are always available in the
RegularFrame under the finish scope and are always pushed by
the worker thread in this frame. Before this worker thread returns

from the AsyncFrame, it always poll to check if the continuation
was stolen. If it was stolen it first checks if the lost continuation is
already finished by the thief. It does this by decreasing the async
count of the FinishFrame, which was incremented by the thief
before executing this continuation. If the async count is zero, the
original worker thread starts unwinding the frames by calling the
back method of AsyncFrame. However, if the async count is not
zero, this worker thread becomes a thief.

4. Jikes RVM Extension For State Stealing

This section discusses the modifications made inside the Jikes
RVM to allow a Java thread to steal states from another Java thread.
We have done our modification inside Jikes RVM from subversion
head with release 16041. We have a working implementation for
both baseline and opt compiled frames, but the implementation is
not fully optimized. In the process of a steal in our system, a thief:

e Forces a victim to yield.

e Copies victim stack frames onto its own Java stack.

e Walks over frames from where the victim would have returned.
e Saves relevant state into a linked list and unwinds the stack.

® Releases the victim to continue its execution.

To achieve this, we use the Jikes RVM yieldpoint mechanism
(which is used for several key functions, including adaptive sam-
pling, garbage collection safe-pointing, and biased locking bias re-
vocation). We also amend the work-stealing application code to in-
clude frame pointers for queued work items—rather than pointers
to state objects used in the default system—to allow thieves to dis-
cover the stack frames from which to extract state.

5. Modifications to X10 Runtime

To support work-stealing, the default X10 runtime performs a two
stage transformation, first an X10 to X10 transformation to target
the work-stealing runtime, and then an X10 to Java transformation
(X10 also supports a C++ backend, motivating this two-stage pro-
cess). Figure 2 shows the expanded code for the Fib.x10 application
as shown in Figure 1 for the unmodified work-stealing runtime.

For our Jikes RVM assisted work-stealing runtime, we modify
the original code (as in Figure 2) to take advantage of the stack state
extraction available in our framework. An extract of the modified
code is shown in Figure 3.

5.1 Fast Path Execution of Workers

One object for each of the frame classes used is preallocated. There
is always a RegularFrame class, which contains all the variables on
which the asyncs operate in each of the parallel sections. An array
of such class object is also preallocated with the array size as total
number of runtime X10 threads. An object at slot n is private to a
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public static
public static
public static
public static
public static

$fib _$fib_obj-new _$£ib();
S$fib[] thr
SEiPFO _$£ibFO_obj=new _S$EibFO();

$FibFOBO _$FibFOBO_obj=new _$fibFOBO (2);

dLocalParam = new _$fib[THREADS];

$fibFOBOAO _$fibFOBOAO_obj=new _$fibFOBOAO();

public def resume(worker:Worker,_ pc:Int,obj:Object) {
switch (_pc) {
case 1:
_pc = 2; 54
threadLocalParamObj = threadLocalParam[THREAD_INDEX]; 55

s3 final static class _S$fibFOBOA0 extends AsyncFrame {

public def fast (threadLocalParamObj:RegularFrame):Int({
threadLocalParamObj.n = threadLocalParamObj.n - 1;

...... 2 worker.saveAsHighestFrame (framePointerToThisMethod); 56 f1 = fib_F (threadLocalParamObj);
final static class _$fibF0B0 extends RegularFrame { E int n = getStatevalue(); 57 if(r alInProgress) {
public def fast (threadLocalParamObj:RegularFrame):Int{ 34 threadLocalParamObj.n = n - 2; 58 /+Thief Saves: _pc, framePointerToThisMethod+/
int _pc = 1; 35 this.updatePartialResultNodeWithMyFPAddress () ; 59 return -1;
int n = threadLocalParamObij.n; 36 ((_$£ib) (obj)) .f2 = fib_F (threadLocalParamObj); 60 }
worker.push (framePointerToThisMethod) ; a7 if (rvmAssistedStealInProgress) ({ 61 boolean frameStolen = worker.poll();
f1 = _$fibFOBOAO_obj.fast (threadLocalParamObj); E /+Thief Saves: _pc, framePointerToThisMethodx*/ 62 if (frameStolen) {
if (rvmAssistedStealInProgress) { 39 return; 63 _$fib t = new _S$fib();
/+Thief Saves: _pc, framePointerToThisMethod,n+/ w0 } 64 t.f1 = £1;
return -1; a } 65 worker.stolen(t);
} 42 } 66
4 public def back (worker:Worker, pc:Int,obj:Object) 67 return f£1;
a switch (_pc) { o)
45 case 2: 6 public def resume (worker:Worker,_ pc:Int,obj:Object){}
46 ((_$fib)obj) .f2 = ((_$fib)obj).result; 70 public def back (worker:Worker,_pc obj:0Object) {
stedStealInProgress) { P ((Fib._$fib)obj) .fl = getStatevalue(); 7 ((_$fib)obj) .f1 = ((_$fib)obj).result;
T Saves: _pc, framePointerToThisMethod, n, £1+/ s break; 2}
return -1; 49 } L N
} 50 } 74}
return f1+f2; 51 aeeae.

Figure 3. Pseudocode generated for Jikes RVM supported X10 work-stealing runtime

worker thread with thread index n. This index is assigned by X10
runtime and is always between O and (total_threads-1). To avoid
passing all the required states as parameters to function, we use
this object instead. All of the above preallocations are as on lines
1-5 in figure 3. The methods at lines 8 & 54 denote the fast path.
The RegularFrame _$fibFOBO contains a push method (provided by
the default implementation of X10 work-stealing runtime). The to-
tal number of steal points in this class is equal to the total number
of calls to push. So the total number of parallel sections inside this
class is the total number of push calls plus 1. This is used by the
modified runtime to set up its internal data structure, which helps
in deciding global termination across all of the parallel sections.
The runtime is informed about the total number of parallel sections
at line 4. The push method is modified to pass the pointer to this
current frame (on its Java stack). This frame pointer is found by ex-
isting mechanisms inside Jikes RVM. With this modification now
each worker thread’s deque stores this frame pointer instead of the
reference to the object containing all the required states. The fast
method of every frame is then modified to pass the preallocated ob-
ject (at line 2) as parameter to the fast method of the next class.
As with default X10 work-stealing runtime, when a worker thread
enters the fast method containing parallel sections, it first performs
a push and then carries out the computation so the continuation
can be computed in parallel. However, there is one significant dif-
ference from the default implementation. In default work-stealing
mode, as shown at lines 3, 11, 27 and 39, in figure 2, before call-
ing the fast method of next class, it was required to do an object
allocation of next class and then call the fast method with this ob-
ject. This object of next class contains a reference to the earlier
class. This was done to assist a worker thread in computing the
slow path, where it has to gather the partial computations from each
worker thread i.e. to know the local states at each class. But with
our implementation these object allocations are not required at all.

Once the activity launched by the async is finished, the worker
thread poll and check if the previously left continuation (by the
last push) have been stolen. However, in our implementation, if
they have been stolen, the worker allocates an object and stores its
partial calculation result inside it. This object is then handed over
to the runtime. After this, the worker thread continues to follow
the default X10 work-stealing execution path i.e. the thief starts
searching for a continuation to steal and for the case where the
previous call to poll found that the continuation was not stolen, it
simply removes the corresponding frame entry from its deque and
start unwinding its frames.

5.2 Stealing and Executing the Continuation

As in the original work-stealing runtime, a thief worker thread
continues to search for continuations to steal in the deque of all

other worker threads. With our implementation, when it steals the
frame pointer from the deque of the victim worker thread, it initi-
ates the Jikes RVM state extractor with two input parameters - the
frame pointer stolen from the deque (say frame_A) and the frame
pointer of the first executed application method (say frame_B). The
frame_B is on the higher memory side of the victim’s Java stack
and the frame_A is on the lower memory side of victim’s Java
stack. The method corresponding to frame_B is the first applica-
tion method executed by the victim. Thief extract the states from
each of the frames starting frame_A of the victim to frame_B as ex-
plained in the section 4 above. For the modified code in figure 3,
once a thief starts the application after extracting the states from
victim’s stack frames, it sets its own frame_B as the first applica-
tion method, which is resume method of _$fibFOBO class, as shown
in line 32. Once inside the resume method the thief initializes the
required states as shown at line 33 in figure 3. It then update the
runtime with the stack frame pointer of its current invocation of
the _$fibFOBO.resume method as at line 35. This follows the call to
_$ibFOBO.fast at line 36, which marks the start of the thief’s fast
path execution.

5.3 Global Termination Data-structure (GTD)

In the default X10 work-stealing runtime, a global termination over
a finish block is determined by decrementing the total async count
(whenever an async returns after computing the continuation) at
each FinishFrame object (corresponding to this finish block), which
was incremented when an async started executing the continuation
stolen from this finish scope. When this count becomes zero, a
global termination is performed.

However, in our implementation, we have only one object al-
located for a FinishFrame class, unlike one object for each finish
block as in case of default X10 work-stealing runtime, and hence
we need some other mechanism to determine a global termina-
tion over each finish blocks. For this, we maintain a data structure,
which is in the form of a linked list! and is maintained by the modi-
fied X10 work-stealing runtime. The information held at each node
of the list is:

e The linked list of states retrieved by the RVM from the victim.

e A list of frame pointers containing - address of stolen frame
from the victim and the address of resume frame from where
the thief started executing the continuation.

e Field indicating total parallel sections available in the Regular-
Frame class of the stolen fast frame from the victim.

! Although we are in the process of converting this to a tree data structure
in our final implementation.



Time | Worker Work Done Last Steal GTD Node Index | Current
GTD
Node
Index
T0 A Starts Application [i]
TO B Waiting to Steal 1]
T0 C Waiting to Steal 1]
T1 A Push: CO 1]
T2 A Push: C1 0
T3 B Steal: CO - 0
T4 B | Add(GTD_Mode0) Node0: 0; 0
T5 A Updated by B MNode0: 0; 0
T6 C Steal: C1 Mode0: 0; 0
T7 C Add{GTD_Node1) Nodel: 0: Node1: 0; 1
T8 A Updated by C Node0: 0; Node1: 0; 1
T9 B Push: C2 Node0: 0; Nodel: 0; 1]
T10 C Steal: C2 Node0: 0; Nodel: 0; 1
T11 C Add{GTD_MNode2) | Node0: 0: Nodel: 0; Node2: 0 2
T12 B Updated by C Node0: 0; Nodel: 0: Node2: 0 2
Figure 4. Updation of last_steal GTD _node_index &

curr_GTD_node_index fields.

e The partial results computed by the worker thread when they
realize that they cannot continue the remaining computation as
it was stolen or if a global termination is still pending.

The total number of registrations completed by a worker thread
for this node of the data structure. A worker thread increments
this registration field whenever it returns back after performing
the computation. A victim increments this when it finds the
continuation was stolen and a thief increments it when it has
finished computing the stolen continuation.

Integer field - last_steal_GTD_node_index - indicating the index
of the parent node in the data structure. Each worker has an
integer field - current_GTD_node_index - which is initially zero.
The update procedure for these fields is explained by Figure 4.

Before creating a new node inside GTD, the runtime always
checks if there is already a node registered with the currently stolen
frame pointer. For doing this, it starts scanning backwards from the
last node inside the GTD. For every node it checks if the stolen
frame address is already stored inside the list of frame pointers at
the GTD node. If the address is already registered then it does not
create a new node.

5.4 Stack Unwinding

If none of the frames of a worker thread are stolen, unwinding
equates to the normal unwinding of the Java stack. However, un-
winding after a steal requires runtime assistance. When a worker
thread returns to a steal point after completing the computation,
the runtime increments the total registration counts for the steal’s
GTD node. If the total registrations is not same as the total num-
ber of parallel sections then it does not allow this worker thread to
unwind—this worker thread will become a thief. When a worker
thread returns after completing a computation, it can then allocate
an object and store its partial calculation result inside it, which is
then attached to the GTD node corresponding to the steal. If there
is already a partial result attached to this GTD node then the com-
putation is updated within that object.

To keep track of which is the parent frame of the current frame,
each worker thread has to scan the list of states saved inside the
GTD node. The state retrieved by the thief is a linked list node.
Each node corresponds to one state and contains the frame pointer
whose state is stored in this node. For every new stack frame, the
first node will contain the reference to the class whose method’s
stack frame is being read. By using this reference the worker thread
can call the resume or back methods of that class. As with default
implementation, if the worker thread is a thief then it starts unwind-
ing by calling the back method of the RegularFrame class inside
which the steal was performed. In our implementation, it can how-
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Figure 5. Ratio of steals to total continuations.

ever get the local states at each back or resume method by reading
the state linked list. If the worker thread is the victim then it will
walk the state linked list until it reaches the next frame. Now as in
default X10 work-stealing runtime, both thief and victim unwind
by first calling the back method and then the resume method for
each class until it reaches the bottommost application stack frame,
or it encounters a frame from RegularFrame class for which the
global termination is still pending. In this case the thread becomes
a thief and starts hunting for frames to steal. In our implementation,
each of the back method and the resume method passes the com-
puted result to the runtime, which then passes it to the invocation
of next class’s back method and then the resume method.

While unwinding, a worker thread always needs to check if
there is any pending global termination for the frame it is currently
processing. As mentioned above, the unwinding is always started
from a steal point. In our implementation this has a corresponding
GTD node. The field last_steal_ GTD_node_index in this node gives
the index of its parent node. For any X10 application the steal
points are only inside the RegularFrame class containing push
method. While unwinding, whenever the worker thread encounters
any frame from such a RegularFrame class it queries the runtime
if any continuation was stolen here. To achieve this the runtime
compares the frame pointer of this frame with the frame pointers
stored at the parent GTD node. If they match then the worker has hit
another steal point while unwinding. The runtime then increments
the pending registration counts and then checks if it is equal to
the total number of parallel sections. If so, it allows the worker to
continue the unwinding. When worker starts unwinding from this
frame then it starts by reading states from the list stored at this GTD
node, discarding the earlier state list.

It is very important that the runtime compares the frame pointer
from RegularFrame classes, containing parallel sections, only with
the frame pointers stored at the parent GTD node. Whenever a
worker thread becomes a thief, it starts with a stack frames with
zero X 10 application frames. Due to this it is possible that the stack
frame pointer for a method (e.g. _$fibFOBO.fast) invoked from steal-
A is same as that of its invocation from steal-B by the same worker
thread. However, until a victim becomes a thief, it is guaranteed
that every frame on its stack has a unique address.

6. Results

All our measurements use the Fibonacci benchmark. While this is
not ideal, we do not have X10 versions of all the regular bench-
marks which we can test over our implementation. We hope to im-
prove this situation in the future.

6.1 Fraction of Continuations Stolen

We performed all experiments with the production build of Jikes
RVM and the machine we used was one node of Core i7 920
Bloomfield (Family 6 Model 26). In every run, the total number



=
=

“ Default Work-Stealing
“ likes Supported Work-Steal

Time (sec)

[T TVR T - I =

[

Dlﬁ-hllllluln
i+ 2 3 4 5 6 7 8

Total Threads

Figure 6. Execution time for work-stealing implementations.

of garbage collector threads were equal to the total number of X10
worker threads.

To verify our belief that few continuations are stolen in practice,
we ran Fib.x10 using the original implementation of the X10 work-
stealing runtime for several problem sizes and a range of worker
thread counts. We calculated the total number of steals in each
run, as well as the total number of continuations produced by
all threads, and report the ratio of stolen to total continuations in
Figure 5. This experiment shows that (at least for this benchmark)
only a very small fraction of continuations are actually stolen. In
such situations it is clear that any additional effort made to eagerly
make available local states at potential steal points would be largely
wasted. Other benchmarks, such as LU, have been shown to exhibit
a steal ratio as high as 20% [12], and we intend to implement such
benchmarks to evaluate our system in the future.

6.2 Performance

Figure 6 compares the execution time of Fibonacci (for N=40) with
our implementaton versus the default work-stealing implementa-
tion in X10 (using the Java back-end). Initial few iterations during
the benchmark execution is discarded considering the warmup time
and the execution time mentioned in the graph is the average of last
five iterations. The graph shows that the execution time with our
system is significantly lower than the default X10 work-stealing im-
plementation, which is a promising result. With different problem
sizes, we have found that the execution time with our implementa-
tion is around 1.5x to 3.3x faster than the default Java X10 work-
stealing, with the difference increasing for larger problem sizes.

7. Conclusion

In this paper we described the design of a work-stealing frame-
work within a Java virtual machine that provides an alternative to
explicitly saving execution states whenever a stealable work item
is created. We measured that in several applications, the vast ma-
jority of work items are never stolen, but are instead processed
by the producer itself. Our design allows the thief to retrieve ex-
ecution state directly from the stack frame of the victim when a
steal is performed. We describe our implementation within the X10
work-stealing runtime and Jikes RVM. We even calculated the per-
formance of our implementation over Fibonacci benchmark. Al-
though we have promising results, our implementation still has to
include many further optimizations. However, with these prelimi-
nary results we are highly excited and we anticipate that our final
implementation will have significant performance benefits over the
conventional way.
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