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Abstract. Speculative task parallelism is a widely used technique for
solving search based irregular computations such as graph algorithms.
Here, tasks are created speculatively to traverse different search spaces
in parallel. Only a few of these tasks succeed in finding the solution, after
which the remaining tasks are canceled. For ensuring timely cancellation
of tasks, existing frameworks either require programmer introduced can-
cellation checks inside every method in the call chain, thereby hurting
the productivity, or provide limited parallel performance.

In this paper we propose Featherlight, a new programming model for
speculative task parallelism that satisfies the serial elision property and
doesn’t require any task cancellation checks. We show that Featherlight
improves productivity through a classroom-based study. Further, to sup-
port Featherlight, we present the design and implementation of a task
cancellation technique that exploits runtime mechanisms already avail-
able within managed runtimes and achieves a geometric mean speedup
of 1.6× over the popular Java ForkJoin framework on a 20 core machine.

Keywords: Speculative parallelism · Async-finish programming ·
Task cancellation · Managed runtimes · Work-stealing

1 Introduction

With the advent of multicore processors, variants of tasks based parallel pro-
gramming models [1,3,9,10,12,18,20,22] have gained a lot of popularity. They
are extremely well suited for parallelizing irregular computations such as graph
search algorithms. Some well-known examples are route planning in navigation
and guidance systems, searching for entities on social networking sites like peo-
ple and places, and finding the winning move in a game tree. Programmers
using these parallel programming frameworks expose a parallel task and rely
on an underlying work-stealing [10] runtime for dynamic load balancing. These
frameworks often satisfy the serial elision for basic tasking support, the property
that is eliding all parallel constructs results in a valid sequential program [10].
While serial elision improves programmer’s productivity, using an underlying
work-stealing runtime improves the parallel performance over multicore proces-
sors. However, this is not the case when using these frameworks for applications
requiring speculative task parallelism, where only a few tasks could provide desir-
able results, as all remaining tasks should terminate after the goal is found.
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Productivity becomes a first-order concern as several frameworks such as Intel
TBB [22], C# [1], X10 [9] and TryCatchWS [18], require programmer inserted
task cancellation checks inside every method in the call chain for timely cancella-
tion of speculative tasks. Cilk [10] provides special support for task cancellation
but the programmer has to implement an inlet that is essentially a C function
internal to a Cilk procedure. The Java fork/join framework [20] does not sup-
port serial elision but provides a shutdownNow API for global task cancellation.
OpenMP 4.0 [3] tasking pragmas and Eureka programming in HJlib [13] provide
task cancellation checks, but the programmer must ensure optimal granularity
for calling these checks to avoid performance degradation.

In this paper, we introduce a new programming model, Featherlight, for spec-
ulative task parallelism that doesn’t require any form of task cancellation checks,
and improves the productivity by satisfying the property of serial elision. For
achieving high performance, Featherlight exploits runtime mechanisms already
available within managed runtimes, namely: (a) yieldpoint mechanism [21], (b)
ability to walk the execution stack of a running thread, and (c) support for
exception delivery. We use six well-know search based micro-benchmarks and
one real-world application from Dacapo benchmark suite [8] to compare the
productivity and performance of Featherlight with the ForkJoin framework, and
also with an approach that uses hand-coded implementation of the task cancel-
lation policy. We use lines of code and time to code based empirical analysis
to demonstrate high productivity in Featherlight. We show that Featherlight
is highly competitive. It achieves performance comparable to the hand-coded
implementation and significantly better than the ForkJoin implementation.

In summary, this paper makes the following contributions:

– Featherlight, a new task-based parallel programming model for speculative
parallelism that satisfies serial elision property.

– A lightweight runtime implementation that supports Featherlight by exploit-
ing existing managed runtime techniques.

– Productivity analysis of Featherlight by using it in a classroom-based study.
– Performance evaluation of Featherlight as compared to Java ForkJoin frame-

work and a hand-coded implementation of task cancellation policy by using
seven popular search based problems on a 20 core machine.

2 Background

2.1 Async-Finish Programming Model

Fig. 1. An async–finish program

Cilk language [10] popularized task paral-
lelism by using spawn and sync keywords
for creating and joining a parallel task. For
scheduling these tasks, an underlying work-
stealing runtime is employed that maintains
a pool of worker threads, each of which
maintains a double-ended queue (deque) of
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tasks. When the local deque becomes empty, the worker becomes a thief and
seeks a victim thread from which to steal work. Likewise, Java supports a
ForkJoin framework [20], and X10 language [9] introduced async–finish con-
structs for task parallelism. This async–finish construct satisfy serial elision
and have been adopted by other frameworks such as Habanero Java library
(HJlib) [12], Habanero C library (HClib) [19], and TryCatchWS [18]. Feath-
erlight is built on top of TryCatchWS and supports async–finish . Figure 1
shows a sample TryCatchWS program that uses async–finish constructs.
The async clause at Line 3 creates a task S1, which can run in parallel with the
continuation S2. An async can be used to enable any statement to execute as a
parallel task, including statement blocks, for loop iterations, and function calls.
A finish is a generalized join operation. Lines 2–5 encloses a finish scope
and ensures that both the parallel tasks S1 and S2 has completed before start-
ing the computation S3 at Line 6. Both async and finish can be arbitrarily
nested.

2.2 Managed Runtime Services

Managed runtimes gained popularity with the advent of the Java language and
have been a very active research area since then. Some of the key features of
managed runtimes exploited in Featherlight are (a) yieldpoint mechanism, (b)
ability to walk the execution stack of a running thread and (c) support for
exception delivery. Yieldpoints are the program locations where it is safe to run
a garbage collector and implement services such as adaptive optimization. The
compiler generates yieldpoints as program points where a running thread checks
a dedicated bit in a machine control register to determine whether it should
yield. The compiler generates precise stack maps at each yieldpoint. If the bit is
set, the yieldpoint is taken and some action is performed. If the bit is not set,
no action is taken and the next instruction after the yieldpoint is executed. In
JikesRVM virtual machine [7], yieldpoints are inserted in method prologues and
on loop back edges.

Exception handling is also an important feature that is well supported by
many modern programming languages like C++, Java, and C#. An exception
is an event that can occur during the execution of the program and disrupts
the program’s control flow. Handlers are subroutines where the exceptions are
resolved, and they may allow resuming the execution from the original location of
the exception. Java uses try and catch blocks for exception handling. Exception
delivery mechanism and other runtime services such as garbage collection are
supported in a managed runtime with the ability to walk the execution stack of
any thread. For walking the stack of a running thread (victim), the victim is first
stopped by using yieldpoint mechanism. The victim saves all its registers and
live program states before stopping. The thread requesting the stack walk can
then easily go over each frame on victim’s execution stack and can manipulate
them as well. The garbage collector uses a stack walk to identify live and dead
objects in the application thread.
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Fig. 2. TryCatchWS work-stealing implementation for executing the async–finish
program shown in Fig. 1

2.3 TryCatchWS Work-Stealing Runtime

We have implemented the runtime support for Featherlight by modifying Java
TryCatchWS work-stealing runtime developed by Kumar et al. [18]. TryCatchWS
is implemented directly inside JikesRVM [7] Java Virtual Machine, and as
demonstrated by Kumar et al. [16,18], it helps in achieving both good scalabil-
ity and good absolute performance. Figure 2 illustrates the TryCatchWS work-
stealing implementation for executing the async–finish program shown in
Fig. 1 by using two workers. The user code written by using async–finish is
first translated to plain Java code by using AJWS compiler [17]. TryCatchWS
follows the work-first principle for task scheduling. The generated code exploits
the semantics Java offers for exception handling, which is very efficiently imple-
mented in most modern JVMs. The result is that the runtime does not need
to maintain explicit deques. It uses the Java thread (execution) stack of both
the victim and thief as their implicit deque. The thief can directly walk a vic-
tim’s execution stack and identify all async and finish contexts, resulting
in a significant reduction in overheads. This allows the programmer to expose
fine granular tasks without worrying about the task creation overheads. For a
detailed overview of TryCatchWS we refer readers to [18].

3 Featherlight Programming Model

Featherlight extends async–finish programming supported by TryCatchWS
with two new constructs:

– finish_abort: This is the regular finish with an added responsibility
to ensure graceful cancellation of speculative async tasks without having
any cancellation condition checking code. Both async and finish can be
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Fig. 3. Searching a unique node in the UTS tree by using three different implementa-
tions of speculative task parallelism. Only Featherlight supports serial elision as erasing
the keywords finish_abort, async, and abort will fetch the original sequential UTS.

nested inside a finish_abort. A finish_abort cannot be nested but can
be called in parallel by placing it inside an async within a finish scope.

– abort: This construct cancels all speculative async tasks once the goal
is found. Cilk also supports a variant of abort but the semantics are
very different (Sect. 6). An abort can be called inside a Featherlight pro-
gram only if there is an encapsulating finish_abort in the method
call stack. If a worker encounters an abort statement, it will cancel only
those async that are (or yet to be) spawned inside a finish_abort
scope in this worker’s method call stack. For example, in the statement
“finish{async{finish_abort{S1;}} async{finish_abort{S2;}}}”,
calling an abort inside S1 will only cancel task S1 and its children (both
pending and running) but will not affect the execution of S2.
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Fig. 4. Source-to-source translation of the code shown in Fig. 3(a) to vanilla Java.
Underlined code is the default code generated by the compiler to support async–
finish .

To further motivate Featherlight, in Fig. 3, we show three different imple-
mentations of UTS program (Sect. 5) as a motivating example. These imple-
mentations use speculative task parallelism for searching a unique node in the
tree. Figure 3(a) shows Featherlight, Fig. 3(b) shows ManualAbort obtained by
hand-coding task cancellation checks in TryCatchWS, and Fig. 3(c) shows Java
ForkJoin implementation. Out of all these three implementations, only Feath-
erlight supports serial elision. Calling an abort at Line 9 in Featherlight will
cancel all async (as all async are inside single finish_abort scope), and
resume the execution right after finish_abort (i.e., Line 5). ManualAbort
requires an atomic cancellation token (Line 3), checking this cancellation token
before executing the task (Line 8), and also checking before creating any new
task (Line 14). These checks are prone to data races if not used properly. It could
also delay task cancellation if not used inside every method in the call chain.
Moreover, having multiple search criteria in the program can make it difficult
to identify the program points where the code for cancellation checks should be
added. Although Java ForkJoin does not require manual cancellation checks, it
does not supports serial elision and requires extensive changes to the sequential
program.

4 Design and Implementation

In this section, we briefly describe our implementation of Featherlight that builds
on Java TryCatchWS work-stealing runtime (Sect. 2.3). Our implementation and
the benchmarks are released open source online on GitHub [15].

For implementing Featherlight we exploit runtime mechanisms already avail-
able within managed runtimes, namely: (a) yieldpoint mechanism, (b) support
for exception delivery, and (c) ability to stack walk the execution stack of a run-
ning thread. When a worker encounters an abort call in a Featherlight program,
it will pause the execution of other workers by using yieldpoint mechanism. It
will then identify the subset of workers that are executing async spawned from
the same finish_abort scope as this worker. These shortlisted workers would
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then relinquish all pending and currently running async, and throw special
exceptions to start the computation from another program point. The insight
is that the cost of canceling the speculatively spawned async should not be
incurred in the common case and should occur only once when the goal has
been found. Our contribution is to design and implement Featherlight, a novel-
programming model for speculative task parallelism that implements our above
insight.

4.1 Source Code Translation of Featherlight to Java

Kumar et al. implemented the AJWS compiler [17] that could translate an
async–finish program into a plain Java program capable of running using
TryCatchWS runtime. We have extended their AJWS compiler to support Feath-
erlight by translating the two new constructs finish_abort and abort into
plain Java code. Figure 4 shows this generated Java code for Featherlight’s imple-
mentation of UTS, shown in Fig. 3(a). All underlined code is the default code
generated by the AJWS compiler to support TryCatchWS. For details on this
default code, we refer readers to [18].

4.2 Canceling Speculative async Once the Goal Is Found

In Featherlight’s implementation, the worker (victim) who started the compu-
tation (Line 3) will first create an object for this new finish_abort scope at
Line 5 and then continue its execution. Any thief who attempts to steal from
this victim will use default TryCatchWS, where it will stop this victim in yield-
point and perform a stack walk of victim’s execution stack to find out the oldest
unstolen continuation. To support Featherlight, we extended this victim’s stack
walk such that now the thief also searches the reachability to any catch block
for handling ExceptionFailAbort (Line 15). The thief will then verify if this catch
block is still reachable from the program point where this thief has to resume
the stolen computation (Line 39). If it is still reachable, this thief will copy the
object corresponding to finish_abort scope stored at the victim (created at
Line 5). Note that the thief will overwrite its copy of this scope object if it enters
another finish_abort.

Assume a worker W1 has found the goal (Line 23). W1 has to decide which
other workers should cancel their async tasks. Essentially, these should be the
workers having the same finish_abort scope object as with W1. This will
ensure that if there were async created from another finish_abort scope,
then they would not be canceled. W1 will first ensure that no other worker
has initiated abort inside this same finish_abort scope (Lines 24–25). W1
will then temporarily pause the work-stealing on all workers, including itself
(Line 26) to avoid deadlock. As thief also relies on the yieldpoint mechanism
to steal from a victim, there could be a deadlock when the thief is attempting
to steal from a victim that is, in turn, trying to yield that same thief from
abort call. After pausing work-stealing globally, W1 will force all other workers
to execute yieldpoint one by one (Line 29). Note that at this point, if any worker
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is executing a critical section by taking a mutual exclusion lock, W1 will wait
inside the call at Line 29 until this worker has released the mutual exclusion
lock. After a worker has paused its execution at yieldpoint, W1 will compare its
finish_abort scope object with that of this worker (Line 30). If it matches,
it will set a flag at this worker for throwing ExceptionFailAbort (Line 31) and
increment the join counter at this finish_abort scope object (Line 32). It
will then release this worker from yieldpoint (Line 33). Finally, W1 will throw
ExceptionSuccessAbort (Line 34) to resume its execution from Line 11.

4.3 ExceptionFailureAbort and ExceptionSuccessAbort

Recall that W1 paused the execution of all other workers inside yieldpoint (Line 29)
and released them after setting the flag throwExceptionFailureAbort
(Line 31) in some of them. After resuming the execution inside yieldpoint, every
worker will first check and reset their flag throwExceptionFailureAbort.
Those who found throwExceptionFailureAbort set to true will throw
ExceptionFailureAbort from yieldpoint to resume their execution from
Line 16. They will first decrement the join counter at this finish_abort scope
object (Line 17), and if the counter value reaches zero, this information is broad-
casted to W1 who is currently waiting at Line 13.

After setting the flag in relavant workers (Line 31), worker W1 will throw
ExceptionSuccessAbort at Line 34 and resume its execution from Line 11.
It will first update its immediate finish scope at Line 11 (if any) and then
wait until all the other relevant workers have resumed their execution inside
catch block for ExceptionFailureAbort. Finally, W1 will allow all workers
to resume their work-stealing (Line 14). After this, it will continue the execution
of user code from Line 19 onward.

5 Experimental Evaluation

We have used six well-known search based micro-benchmarks and one application
from Java DaCapo benchmark suite [8] for our experimental evaluation:

UTS. Variant of Unbalanced Tree Search [24] where it searches for a specific
goal node in the tree. We used T1 configuration (geometric tree) with a
maximum height of 10. Applications that fit in this category include many
search and optimization problems that must enumerate an ample state space
of the unknown or unpredictable structure.

LinearSearch. It searches for 10 items in a 2D array of size 1000 × 20000.
NQueens. Goal is to find 20% of total possible solutions for placing 14 queens

on a 14 × 14 board such that no two queens can attack each other [18].
This benchmark uses a backtracking algorithm that is also used for solving
constraint satisfaction and combinatorial optimization based problems.
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SLP. It adds edge weights in UTS and then finds shortest and longest path
from the root to goal nodes within a given range of 1058–7563 [13]. We used
T3 configuration (binomial tree) with a maximum height of 10 and a total of
254 goal nodes. This algorithm is also used for a large variety of optimization
problems in network and transportation analysis.

Sudoku. This solves a Sudoku puzzle by exploring a game tree [13]. Board size
was 16 × 16 and a total of 148 unsolved entries.

TSP. Traveling salesman problem [13] for 20 cities that searches for a path ≤ 156.
Similar to SLP, TSP is used in complex optimization problems such as plan-
ning and scheduling.

lusearch. Variant of lusearch-fix from Java DaCapo benchmark suite [8]. It uses
Apache Lucene [23] for text search of keywords over a corpus of data com-
prising the works of Shakespeare and the King James Bible. In this variant,
the search terminates when 80% of total search queries are completed.

To ensure serial elision we did not control task granularity in any of the above
benchmarks. We implemented four different versions for each benchmark: (a)
Featherlight that uses async, finish_abort, and abort constructs; (b) Man-
ualAbort that replaces finish_abort with finish in Featherlight, removes
abort, and uses token-based cancellation checks to cancel speculatively spawned
async; (c) ForkJoin based on Java ForkJoinPool that uses shutdownNow
library call for task cancellation; and (d) Sequential Java that is the serial elision
of Featherlight.

The benchmarks were run on a dual socket 10 core Intel Xeon E5-2650 v3
processor running at 2.3GHz and with a total of 96GB of RAM. The operating
system was Ubuntu 16.04.3 LTS. We have ported Kumar et al.’s TryCatchWS
runtime on JikesRVM GitHub version 087d300. This version of TryCatchWS was
used for the evaluation of ManualAbort. Sequential Java version of each bench-
mark was run directly on the above version of unmodified JikesRVM. Feath-
erlight was implemented and evaluated on the above mentioned TryCatchWS
version. For all evaluations, we used the production build of JikesRVM. Fixed
heap size of 3GB and single garbage collector thread was used across all experi-
ments. We bound work-stealing worker threads to individual CPU cores and did
not use hyper-threading. Other than this, we preserved the default settings of
JikesRVM. AJWS compiler version bd5535f on GitHub was extended to support
code generation for Featherlight. For each benchmark, we ran 30 invocations,
with 15 iterations per invocation where each iteration performed the kernel of
the benchmark. In each invocation, we report the mean of the final five iterations,
along with a 95% confidence interval based on a Student t-test. We report the
total execution time in all experiments (including time for garbage collection).

5.1 Productivity Analysis

Program size or Lines of Code (LoC) is a widely used metric for measuring
software productivity [13,17]. Table 1 shows this number for each benchmark
and its corresponding four variants. A support code is the common code across
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Table 1. Productivity metrics in terms of LoC in actual implementations and time
spent by students in classroom [6] for implementing speculative task parallelism.

Lines of Code (LoC) generated using
David A. Wheeler’s ‘SLOCCount’ [26]

Time (minutes) spent by students

Featherlight ForkJoin

Benchmark Common
code

Sequential Featherlight ManualAbort ForkJoin Subjects Mean St.Dev. Subjects Mean St.Dev.

UTS 545 39 39 45 58 9 8.6 6.1 9 52.2 13.5
LinearSearch 88 44 44 46 75 - - - - - -

NQueens 75 48 48 53 68 7 13.6 10.2 8 61 17.2
SLP 558 54 54 60 76 6 11.7 4.1 8 43.4 16.6

Sudoku 469 48 48 54 66 6 6 2.6 8 58.8 11.6
TSP 158 55 55 61 84 7 10.4 4 8 53.1 24.8

lusearch >126K 222 222 242 239 - - - - - -

all four variants of a benchmark. It is highest for lusearch as it uses Apache
Lucene for text search. Featherlight supports serial elision and has same LoC
as in Sequential. ManualAbort has more LoC than Sequential as it has hand-
coded task cancellation checks. ForkJoin requires significant modifications to the
Sequential and hence has the maximum LoC.

We also conducted an empirical study [6] to quantify programming effort
based on the time required for programming Featherlight and ForkJoin imple-
mentations. This classroom study was of 90min and involved 41 senior under-
graduate and postgraduate students from an introductory parallel programming
course at IIIT Delhi (CSE502, Spring 2019 semester). These students were first
taught about speculative task parallelism and were provided with working copies
of both Featherlight and ForkJoin implementations of LinearSearch benchmark
as a reference. For this study, each student was provided with two different
Sequential benchmarks (except lusearch due to its cumbersome setup). They
were then asked to implement ForkJoin version of one of these two Sequen-
tial benchmarks and Featherlight version of the other one. We recorded the
time taken by students for both these implementations and report the average
time along with the standard deviation in Table 1. Average time required for
Featherlight implementation ranged between 6–13.6min verses 43.4–61min for
ForkJoin. Support for serial elision and lesser time to code demonstrate that
Featherlight is extremely effective in enhancing programmer’s productivity, an
important consideration given the current hardware trend and the plethora of
real-world search based problems existing today.

5.2 Performance Analysis

Figure 5(a) shows the speedup of Featherlight relative to ManualAbort for all
benchmarks by using 20 workers. Except for Sudoku, both Featherlight and Man-
ualAbort perform within 5% of each other. This shows that Featherlight imple-
mentation does not add significant runtime overheads. Figures 5(b)–(g) shows
the speedup of both Featherlight and ForkJoin relative to Sequential implemen-
tation for each of the benchmarks. We can observe that Featherlight can achieve
significant speedup over the Sequential counterpart. Featherlight was also able to
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(d) NQueens speedup over Sequen-
tial
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(e) SLP speedup over Sequential
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(f) Sudoku speedup over Sequen-
tial
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Fig. 5. Performance analysis of Featherlight and ForkJoin on a 20 core machine. Some
benchmarks achieve super-linear speedup, which is possible in speculative parallel pro-
gramming.
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outperform ForkJoin across all benchmarks by increasing the parallelism (except
for SLP at 20 workers). Average speedup of Featherlight over ForkJoin across
all benchmarks and by using 20 workers was 1.7× with a geometric mean of
1.6×. Few benchmarks (UTS, LinearSearch, and Sudoku) achieved super-linear
speedup. It is possible as speculative decomposition may change the amount
of work done in parallel, thereby resulting in either sub-linear or super-linear
speedups [11].

For Sudoku benchmark, ForkJoin performed better than Featherlight at lower
worker counts. ForkJoin follows help-first work-stealing policy [27], i.e., fork call
merely pushes the task on the deque, and the continuation is executed before the
task. Featherlight follows work-first work-stealing policy, i.e., async is executed
before the continuation. We found that due to this difference, ForkJoin created a
lesser number of tasks in Sudoku than Featherlight, thereby performing better at
lower worker count. However, Featherlight outperformed ForkJoin by increasing
the parallelism.

We also noticed that unlike all other benchmarks, calling shutdownNow in
ForkJoin implementation of lusearch only partially canceled the tasks. As per
Javadoc [5], shutdownNow is typically implemented via Thread.interrupt(), so
any task that fails to respond to interrupts may never terminate. We found it
to be true in this case as there are several catch blocks for InterruptedException
inside Apache Lucene codebase over which lusearch is implemented. This is a
limitation that Featherlight does not suffer as long as appropriate Exception
subclasses are used instead of catch(Exception e){} blocks.

6 Related Work

Kolesnichenko et al. provided a detailed classification of task cancellation pat-
terns [14]. Java ForkJoin [20], Scala [4] and Python [2] simply terminate all the
threads once a cancellation is invoked by the user. Cilk allows speculative work
to be canceled through the use of Cilk’s abort statement inside function-scoped
inlets [10]. The abort statement, when executed inside an inlet, causes cancel-
lation of only the extant children but not the future children. For preventing
future children from being spawned, users should set a flag in the inlet indi-
cating that an abort has taken place, and then test that flag in the procedure
before spawning a child. This approach differs in Featherlight as an abort will
cancel both extant and future tasks inside the scope of finish_abort without
the need of any cancellation flag. OpenMP supports a task cancellation pragma
that allows grouping of tasks that could be canceled [3]. However, cancellation
could only be trigger by user-provided cancellation checks on task cancellation
pragma. Although OpenMP supports serial elision, user provided cancellation
checks hampers the productivity. Unlike Featherlight, both Cilk and OpenMP
have another limitation that cancellation is not possible when the code is exe-
cuting in a nested function call (long running tasks). TBB users must use either
cancellation tokens or interrupt checking for task cancellation [22,25]. C# sup-
ports cooperative cancellation by using cancellation token checking and throw-
ing an exception once the result is found [1]. Eureka programming in HJlib [13]
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allows the user to identify the program points where the task could be canceled
by using the runtime provided cancellation check call. A drawback is that the
programmer has to determine the frequency (granularity) of the check calls to
avoid overheads.

Featherlight radically differs from all existing approaches in following ways:
(a) it improves the productivity by satisfying serial elision, (b) it doesn’t require
any cancellation checks inside async tasks, and (c) it uses managed runtime
techniques to gracefully and safely cancel all speculatively spawned async when
abort is called.

7 Conclusion

Several modern real-world applications are comprised of search based problems
that perform best by using speculative parallelism. This parallel programming
technique often requires programmer inserted cancellation checks inside specula-
tively spawned parallel tasks to terminate them once the search result has been
found. In this paper, we designed and implemented a new programming model
for speculative task parallelism that improves the programmer productivity by
removing the need for any cancellation checking code and by satisfying serial
elision. It uses existing mechanisms in modern managed runtimes to cancel all
ongoing and pending computations once the search result is found. Our empiri-
cal results demonstrate that we can achieve better productivity and performance
compared to traditional approaches for speculative task parallelism.
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