
Vivek Kumar
IIIT New Delhi, India

PufferFish: NUMA-Aware
Work-stealing Library using

Elastic Tasks

IEEE HiPC’20

Outline

• Introduction
• Contributions
• Motivating analysis
• Insights and approach
• Implementation
• Experimental Evaluation
• Summary

PufferFish | Vivek Kumar | HiPC 2020

Task Parallelism on Multicore Processors

PufferFish | Vivek Kumar | HiPC 2020 3

Introduction

1. void foo() {
2. finish {
3. async S1; // Parallel Task-1
4. async S2; // Parallel Task-2
5. } // Synchronization point
6. S3; // Starts after termination of Task-1 & Task-2
7. }

• Dynamic task parallelism using async-finish
– async fork a new task that can run in parallel to other tasks inside finish
– finish joins all async tasks created inside its scope

• High productivity due to serial-elision
– Removing all async and finish constructs results in a valid sequential program

• High performance from work-stealing runtime
– Each worker (victim) push and pop async on its deque
– Idle worker (thief) randomly chooses a victim to steal a task

Merge Sort on UMA Multicore Processor

PufferFish | Vivek Kumar | HiPC 2020 4

Introduction

Multicore processor figure source: https://www.cse.wustl.edu/~jain/cse567-11/ftp/multcore/fig1.png

• Multicore processor with Uniform
Memory Access (UMA)
– High performance

• Same latency to access a memory location
by all cores

Merge Sort on NUMA Multicore Processor

PufferFish | Vivek Kumar | HiPC 2020 5

Introduction

• Multicore processor with Non-UMA (NUMA)
– Low performance

• Random work-stealing disrupts the locality
– Task and its data may not be on the same NUMA node
– Thief doesn’t prioritize local steal over remote steal

Work-Stealing in a Recursive Application with
Irregular Execution DAG

PufferFish | Vivek Kumar | HiPC 2020 6

The Problem

• How to schedule a task on
a NUMA node that has the
task’s data
– Programmer based task

mapping
• Program modification
• Breaks serial elision

• How to prioritize local steal
over remote steals
– Hierarchical work-stealing

• Remote steal breaks locality
• Not stealing from remote

node can starve workers
within a node

Contributions

PufferFish | Vivek Kumar | HiPC 2020 7

PufferFish programming model
For NUMA-aware task parallelism that uses data-affinity hints and almost
supports serial elision

Lightweight work-stealing implementation
That integrates data-affinity hints with a hierarchical work-stealing library

without causing starvation

Locality preserving hierarchical elastic tasks
That improves locality by reducing context switches at task creation by

increasing or decreasing its parallelism

Detailed performance study
Using both micro and real-world benchmarks on a 32-core NUMA processor

PufferFish | Vivek Kumar | HiPC 2020

Motivating Analysis

8

Merge Sort using Hierarchical Place Trees (HPT [1])

async-finish for UMA
HPT for NUMA

• HPT implementation in HClib [2]

– Top-level task partitioning by programmer
• Required at each finish scopes

– Breaks serial elision property of async-finish
– Hierarchical work-stealing

• Worker W0 attempts to pop task from P5, P1, P0, and
then attempts to steal also in same order if pop failed

– Starvation at NUMA places P2 and P3 during Merge

[1] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar, “Hierarchical Place Trees: A portable abstraction for task parallelism and data movement”, LCPC'10 [2] http://habanero-rice.github.io/hclib/

Insights and Approach

PufferFish | Vivek Kumar | HiPC 2020 9

• Preserve serial elision in async-finish programming
over NUMA processor
– PufferFish programming model for integrating data-affinity

hints in an async

• Hierarchical work-stealing should neither break the
task locality, nor it should induce starvation
– Automatically calculate place to push async_hinted
– If there is no load imbalance at a worker’s leaf place, let it

directly execute the task
• Avoids context switch at task creation and improves locality

async_hinted numa_alloc_block_cyclic numa_alloc_interleaved numa_free

Assign data-
affinity hints

with an async
task

Block cyclic allocation of
physical pages on NUMA

nodes

Round-robin allocation of
physical pages over

NUMA nodes

Deallocate
the physical

pages

PufferFish | Vivek Kumar | HiPC 2020

PufferFish Implementation

10

Merge Sort using PufferFish Programming Model

async-finish for UMA

• PufferFish programming model
– Implemented over HPT implementation in HClib
– Assigns data-affinity hints to async tasks instead of place affinity

• No program modification based on NUMA architecture
• Supports serial elision

– Except for two NUMA memory allocation/deallocation APIs

async_hinted-finish for NUMA

PufferFish | Vivek Kumar | HiPC 2020

PufferFish Implementation

11

Hierarchical Elastic Tasks

PufferFish | Vivek Kumar | HiPC 2020

PufferFish Implementation

12

Hierarchical Work-Stealing

• Modifications to HPT in HClib
– Worker can pop only from its leaf place
– Hierarchical steals within a NUMA domain and then from logical

root
• W0 at place P5 steal from all deques at places P5, P1, P6, and P0,

respectively until successful
– Strict locality without worker starvation

Performance Analysis on AMD EPYC 7551

PufferFish | Vivek Kumar | HiPC 2020

Experimental Evaluation

13

0
2
4
6
8

10
12
14
16
18

G
eo

m
ea

n
S

pe
ed

up

ov
er

 S
eq

ue
nt

ia
l

Executing summary for seven recursive benchmarks with
regular/irregular DAG on a 32-core processor with four NUMA nodes

Random work-stealing HPT with
Hierarchical

work-stealing

First-touch
allocation

policy

Interleaved
allocation

policy

async_hinted with
data-affinity hints

and NUMA
allocation APIs

Default HClib

CilkPlus

PufferFish

16.8x

10.9x

13.2x
14.1x

8.9x

11.5x

Summary and Conclusion

PufferFish | Vivek Kumar | HiPC 2020

Summary

14

• Mapping async-finish to NUMA node in recursive
applications
– Breaks serial elision
– Create starvation

• PufferFish
– async-finish programming model with data-affinity hints

instead of NUMA place hints
• Almost serial elision
• No program modifications for different NUMA configurations

– Hierarchical work-stealing with strict locality and
hierarchical elastic tasks

• Improves locality without starvation

Artifact

PufferFish | Vivek Kumar | HiPC 2020

• Open sourced on Github
– https://github.com/hipec/pufferFish/archive/v1.0.zip

• Author information
– http://vivkumar.github.io/

15

