
PufferFish: NUMA-Aware Work-stealing Library
using Elastic Tasks

Vivek Kumar
IIIT-Delhi, New Delhi, India

Abstract—Due to the challenges in providing adequate memory
access to many cores on a single processor, Multi-Die and
Multi-Socket based multicore systems are becoming mainstream.
These systems offer cache-coherent Non-Uniform Memory Access
(NUMA) across several memory banks and cache hierarchy to
increase memory capacity and bandwidth. Random work-stealing
is a widely used technique for dynamic load balancing of tasks on
multicore processors. However, it scales poorly on such NUMA
systems for memory-bound applications due to cache misses and
remote memory access latency. Hierarchical Place Tree (HPT) [1]
is a popular approach for improving the locality of a task-based
parallel programming model, albeit it requires the programmer
to map the dynamically unfolding tasks over a NUMA system
evenly. Specifying data-affinity hints provides a more natural
way to map the tasks than HPT. Still, a scalable work-stealing
implementation for the same is mostly unexplored for modern
NUMA systems.

This paper presents PufferFish, a new async–finish
parallel programming model and work-stealing runtime for
NUMA systems that provide a close coupling of the data-
affinity hints provided for an asynchronous task with the HPTs
in Habanero C/C++ library (HClib). PufferFish introduces
Hierarchical Elastic Tasks (HET) that improves the locality by
shrinking itself to run on a single worker inside a place or
puffing up across multiple workers depending on the work
imbalance at a particular place in an HPT. We use a set of
widely used memory-bound benchmarks exhibiting regular and
irregular execution graphs for evaluating PufferFish. On these
benchmarks, we show that PufferFish achieves a geometric
mean speedup of 1.5× and 1.9× over HPT implementation in
HClib and random work-stealing in CilkPlus, respectively, on
a 32-core NUMA AMD EPYC processor.

Index Terms—NUMA; async-finish Programming Model;
Work-Stealing;

I. INTRODUCTION

The breakdown of Dennard scaling has put a stop on faster
single-core performance, and mainstream processors today are
using multicores for achieving better performance. However,
modern CPUs are way faster than DRAM. Hence, it is difficult
for the processor vendors to maintain low memory latency
and high memory bandwidth by stamping many cores onto a
single processor. Complex hardware caching mechanisms and
on-chip memory controllers can alleviate the situation up to
some level, but it also significantly increases the processor
manufacturing cost. To get around this problem, modern
processors support cross-chip interconnect. It helps bridge
several multicore dies and processors (sockets) together in a
cache coherent manner, where each unit has its local DRAM
and caches. Still, it can also access the memory on the
remote units. This architecture is becoming mainstream and is

Fig. 1. AMD EPYC 7551 processor

called cache-coherent Non-Uniform Memory Access (NUMA)
architecture due to different layers of the memory hierarchy.
Figure 1 represents the NUMA architecture of the AMD EPYC
7551 processor used in this paper for experimental evaluations.

Tasks-based programming models [2], [3], [4], [5], [6]
are widely used for writing parallel programs for multicore
processors. They rely on an underlying work-stealing [7]
runtime for dynamic load-balancing of the tasks exposed by
the programmer. Work-stealing uses a pool of worker threads
where each worker maintains a local set of tasks (deque).
Once a worker (thief) becomes idle, it randomly chooses a
busy worker (victim) to steal a task. Random victim selection
has been analyzed and shown to achieve a provably good
parallel speedup [7]. However, randomly selecting a victim
on NUMA systems can adversely affect the performance of
a memory-bound application due to cache misses and remote
memory access latency. In iterative applications, the locality
of random work-stealing can be improved by using runtime
profiling either by using trace-replay based constrained work-
stealing [8] or by profiling hardware performance counters [9].
However, the trace-replay of random work-stealing does not
guarantee to co-locate the task and its data on the same NUMA
domain. Likewise, the hardware performance counter-based
approach suffers from portability issues as these counters are
specific to a particular processor architecture.

Hierarchical Place Tree (HPT) is another popular approach
for improving the locality based on programmer’s insights on
mapping tasks onto a hierarchical representation of places on
NUMA systems [1], [10], [11]. It has been widely adopted
across several task-based programming models [12], [13],
[14], where each implementation uses some form of hier-

archical work-stealing where a thief first chooses a nearby
victim in the NUMA memory hierarchy before attempting
a remote steal. A limitation of this technique is that it can
work well only if the work-load is evenly partitioned across
all the place in the NUMA system. Otherwise, it can cause
starvation. The programmer’s insights on mapping tasks can
work well for applications with regular execution Directed
Acyclic Graph (DAG). Still, it is challenging to determine
an optimal partitioning a priori for applications with irregular
execution DAG. If a DAG has the same branching degree for
all its non-leaf nodes, then it is a regular DAG and an irregular
DAG in different branching degrees.

This paper explores a simple and straightforward approach
for NUMA-aware work-stealing called PufferFish that
does not use any runtime profiler and improves the locality
of both regular and irregular DAGs. PufferFish extends
the traditional async–finish programming in the HClib
library [4] by allowing the programmer to provide data-affinity
hints [15] in an async instead of mapping a task to a place
in an HPT. PufferFish uses a novel hierarchical work-
stealing algorithm that parses these hints and dynamically
decides the task’s optimal execution location. This location
could either be a particular worker, a group of workers inside
a NUMA domain, or a locality-free location. For improving
the locality of tasks within a place, it introduces a hierar-
chical implementation of elastic tasks [16], called Hierarchical
Elastic Task (HET). HET operates only at leaf place in
an HPT that corresponds to shared caches (e.g., L3). Once
a worker pulls a task into a leaf place, that task shrinks
itself into a sequential task such that it can run only on
that particular worker. Whenever load-imbalance arises at a
leaf place, HET running on other workers in that same leaf
place expands itself into parallel tasks for balancing that
specific place’s workload. We choose a set of widely-used
micro-benchmarks and a real-world application and implement
regular and irregular DAG versions to study the performance
benefits of PufferFish on a modern NUMA processor.
We show that PufferFish performs significantly better
than the random work-stealing implementations in HClib
(Section II-A) and CilkPlus [6].

In summary, this paper makes the following contributions:

• PufferFish, a new async–finish task-based par-
allel programming model for NUMA systems that inte-
grates data-affinity hints with an HPT implementation.

• A novel hierarchical work-stealing runtime for
PufferFish with the support for Hierarchical
Elastic Tasks that improves the locality by shrinking
itself to run on a single worker inside a place, or by
puffing up across multiple workers depending on the
work imbalance at a particular place in an HPT.

• Performance evaluation of PufferFish compared to
HClib and CilkPlus on a 32-core NUMA AMD
EPYC 7551 processor using regular and irregular execu-
tion DAGs in four popular memory-bound applications.

The rest of the paper is structured as follows. Section II

1 void foo(int n) {
2 int a,b;
3 hclib::finish([&a,&b,n]() { /*start finish scope*/
4 hclib::async([&a,n]() {
5 a = S1(n);
6 });
7 b = S2(n);
8 }); /*end finish scope*/
9 S3(a,b);

10 }

Fig. 2. An example of async–finish programming using HClib. async
denotes a task that could run in parallel to other tasks and finish denotes
synchronization point for parallel tasks created within its scope.

provides the relevant background. Section III motivates and
explain the PufferFish programming model. Section IV
explains the design and implementation of PufferFish
work-stealing runtime. Section V discusses our evaluation
methodology. Section VI discusses the performance evaluation
of PufferFish. Section VII explains the related work and
finally section VIII concludes the paper.

II. BACKGROUND

This section provides a brief overview of the async–
finish parallel programming model supported by Habanero
C/C++ library and its work-stealing runtime (Section II-A)
and the Hierarchical Place Trees implementation in HClib
(Section II-B).

A. HClib Library

The Habanero-C/C++ library (HClib) [4] offers an
async–finish programming model for exploiting shared
memory parallelism. These constructs were first coined by
X10 language [17]. Now it has been adopted by several other
frameworks supporting task parallelism [18], [19]. Its variants
are also supported in other popular frameworks [20], [2].

a) async–finish programming model: HClib is
a native library-based implementation of the Habanero pro-
gramming model that offers C and C++ APIs. It provides
high productivity in writing async–finish programs by
making heavy use of C++11 lambda functions in its APIs.
C++11 lambdas avoid the need for compiler support while
still retaining the syntactic convenience of language-based
approaches. Figure 2 shows a sample code written by using
async–finish APIs supported by HClib. Both these
APIs accept a C++11 lambda function as an argument. The
async API creates a task S1, which can run in parallel with
the following statements, i.e., S2. An async is a powerful
primitive because it can be used to enable any statement to
execute as a parallel task, including statement blocks, for-
loop iterations, and function calls. finish is a generalized
join operation. Method S3 will never execute until both S1
and S2 have completed. The power of these constructs comes
from the ability to nest async and finish arbitrarily. Due to
its simple programming interface, HClib is also used for
teaching an introductory parallel programming course at IIIT-
Delhi (CSE502).

Fig. 3. Hierarchical work-stealing implementation in HClib for HPT shown in Figure 4(a)

1 <HPT version="1.0">
2 <place num="1" type="mem"> <!-- logical root -->
3 <place num="4" type="cache"> <!-- 4 NUMA nodes -->
4 <place num="2" type="cache"> <!-- 2 L3 per node -->
5 <worker num="4"/> <!-- 4 workers per L3 -->
6 </place>
7 </place>
8 </place>
9 </HPT>

(a) XML file for representing the hierarhcy shown in Figure 3

1 <HPT version="1.0">
2 <place num="1" type="mem"> <!-- logical root -->
3 <place num="4" type="cache"> <!-- 4 NUMA nodes -->
4 <worker num="8"/> <!-- 8 workers per node -->
5 </place>
6 </place>
7 </HPT>

(b) XML file for the same machine but without adding L3 cache

Fig. 4. User provided XML file for representing the hierarhcy shown in
Figure 3.

b) Help-first work-stealing runtime: HClib internally
uses a help-first [21] work-stealing implementation for load-
balancing of parallel tasks compared to work-first [20] work-
stealing approach in Cilk due to library-based implementation.
In this help-first implementation, the worker (victim) exe-
cuting the async task S1 in Figure 2 would push this task
on its deque. It will then execute the statement S2. After
completing the execution of S2, the worker will reach the end
finish scope, where it will try to pop the task S1 from its
deque. If any thief stole this task, the victim would become
a thief. Otherwise, it will pop and execute S2 after a context
switch. In work-first technique, a context-switch is triggered
only by a steal operation.

B. Hierarchical Place Trees (HPT)

Languages such as X10 [22] and Chapel [23] introduced
place and locale, respectively, to specify the task locality
in a NUMA cluster. However, this model is flat in structure
and cannot capture the locality as per the NUMA hierar-
chy. Habanero programming model generalized this notion of
place as an abstraction of the memory hierarchy in a NUMA
system [1], [10]. This model is also being used in other task-
based programming models [12], [13], [11], [4].
HClib allows the user to define the NUMA memory

hierarchy using an XML input file. Figure 4 shows the code

for two XML files for representing the memory hierarchy
of the AMD processor shown in Figure 1 in two different
ways. In this paper we have used the implementation shown in
Figure 4(a). If an XML file is not provided, HClib assumes a
flat memory hierarchy (single place). Runtime will read this
XML file at the program launch and model the affinity as a tree
of places, thus the name Hierarchical Place Trees (HPT). The
choice of a particular representation of hierarchy often depend
on the application, and the desired trade-off between locality
and load balance for a given task. Allowing the programmer
to specify this configuration in a flexible way is an added
advantage.

Each place in an HPT will contain a deque for
each worker for lock-free push and pop operations.
Although synchronization is required for steal. Any
worker can push a task at any place using an API
“async_at(place_id, lambda)”. This has a downside
that the programmer is required to specify the place hint
with each async_at tasks. This is challenging for recursive
parallel programs. For preserving the locality, HPT restricts
the pop and steal at a place only to the workers in the
child nodes of this place in HPT. For example, in Figure 3,
worker W0 will first pop from place P5, followed by place
P1 and place P0, respectively. If it failed in pop, it would
attempt to steal from these same places in the same order.
This helps in achieving locality among the tasks that share
some data. HClib runtime ensures that the worker threads
are bounded to the appropriate core id for avoiding thread
migration.

III. PUFFERFISH PROGRAMMING MODEL

We had to ensure that PufferFish preserves the serial-
elision [20] as much as possible. The basic async–finish
programming model in HClib supports this property that
is removing all parallel APIs results in a valid sequential
program. It is otherwise hard to achieve by using a program-
mer’s insights on mapping tasks on a NUMA system. To
achieve this goal, PufferFish extends the async–finish
programming supported by HClib with two sets of new APIs:

• NUMA-aware memory allocations: The
programmer should first allocate the arrays
accessed inside a parallel region by using

1 #include <hclib.hpp>
2 using namespace pufferfish;
3 int* A;
4 /* recursive merge generates two async_hinted */
5 void merge(int L1, int H1, int L2, int H2);
6 void sort(int L, int N) {
7 if(N<LIMIT) return seq_sort(L, N);
8 int Q=N/4;
9 finish([=]() {

10 async_hinted(A, L, L+Q-1, [=]() {
11 sort(L, Q);
12 });
13 async_hinted(A, L+Q, L+2*Q-1, [=]() {
14 sort(L+Q, Q);
15 });
16 async_hinted(A, L+2*Q, L+3*Q-1, [=]() {
17 sort(L+2*Q, Q);
18 });
19 async_hinted(A, L+3*Q, L+N-1, [=]() {
20 sort(L+3*Q, Q);
21 });
22 });
23

24 finish([=]() {
25 async_hinted(A, L, L+2*Q-1, [=]() {
26 merge(L, L+Q-1, L+Q, L+2*Q-1);
27 });
28 async_hinted(A, L+2*Q, L+N-1, [=]() {
29 merge(L+2*Q, L+3*Q-1, L+3*Q, L+N-1);
30 });
31 });
32

33 merge(L, L+2*Q-1, L+2*Q, L+N-1);
34 }
35 int main(int argc, char** argv) {
36 launch([&]() {
37 A = numa_alloc_blockcyclic<int>(N);
38 initialize(A);
39 sort(0, N);
40 numa_free(A);
41 });
42 }

Fig. 5. Recursive CilkSort benchmark parallelized using PufferFish
programming model. Underlined APIs are specific to PufferFish

numa_alloc_blockcyclic<T>(count) and
numa_alloc_interleave<T>(count) APIs.
In this prototype implementation of PufferFish
we currently support one-dimensional arrays only.
numa_alloc_blockcyclic block-cyclic performs
distribution of the physical pages over NUMA nodes
with block size as num_pages/num_numa_nodes.
numa_alloc_interleave performs a round-robin
distribution of physical pages across all NUMA nodes.
numa_free API is used for freeing the memory. All
these APIs are wrappers over libnuma library [24].

• Providing data-affinity hints: An async_hinted API is
used for this purpose that is otherwise a regular async.
It is a variadic function that accepts a variable number
of affinity hints. Each hint is a pair of three variables
in the following order: pointer to the start index of
the array allocated using numa_alloc_blockcyclic
and numa_alloc_interleave APIs, start and the
end indices in this array touched by this task. The last
parameter to async_hinted is the lambda task. The
programmer should judiciously pass the data-affinity hints
for achieving good performance. If an async_hinted

operates on different arrays allocated using the same API,
of the same datatype and on the same index range, then
hint should be provided only for one of the variety.

To further motivate PufferFish, we show its usage in
Figure 5 using a recursive CilkSort program used in our
experimental evaluations (Section V). This program gener-
ates an irregular execution DAG as each vertex’s degree
in the DAG is not the same. To understand programmer-
based partitioning challenges, consider two different NUMA
systems, namely System-A having two NUMA nodes, and
System-B having four NUMA nodes. There are three sets
of async–finish scopes at the top-level that requires
partitioning by the programmer: a) Region-1 inside sort
method with four parallel tasks (Lines 9– 22), b) Region-2
inside sort method with two parallel tasks (Lines 24– 31)
and c) Region-3 inside the merge method with two parallel
tasks (hidden in Figure 5). Partitioning the Region-1 is easy
for both the systems. However, it is challenging to partition
the Region-2 and Region-3 evenly over System-B without
modifying the above algorithm. Programmer-based top-level
partitioning will also break the serial-elision. PufferFish
overcomes this limitation by relying on data-affinity hints
from the programmer instead of top-level task partitioning.
Except for the numa_alloc_blockcyclic (Line 37) and
numa_free (Line 40) APIs, it supports the serial-elision
property. Removing the lambda function APIs for finish,
async_hinted, and launch will recover the sequential
implementation of CilkSort.

IV. DESIGN AND IMPLEMENTATION

In this section, we describe our implementation of
PufferFish that is based on HClib work-stealing library
(Section II-A). Our implementation and the benchmarks are
released open source online on GitHub [25].

At a high-level, PufferFish implementation first uses the
data-affinity hints provided in an async_hinted for finding
the place id in an HPT that contains most of the physical
pages for the memory accessed in this task (Section IV-B).
The async_hinted is then pushed at the current worker’s
deque at that place. When a worker become idle, it would
attempt to grab a task using hierarchical work-stealing that
improves the default implementation in HClib by reducing
starvation (Section IV-C). For minimizing the loss in local-
ity arising due to context switches at every task execution,
PufferFish uses a hierarchical elastic task implementation
of async_hinted that can inflate or deflate its recursive
parallelism depending on the place load (Section IV-D).

A. NUMA memory manager

PufferFish has a NUMA memory manager that is built
over libnuma library. It currently supports block-cyclic (total
NUMA node number of blocks) and interleave allocation of a
contiguous chunk of memory. Each allocation stores a pointer
to the allocated memory, size of the datatype, allocation length,
and the type of distribution. This information is used for
mapping an array access range to its physical pages.

1 place_t* find_place(hint_info_t* list, int size) {
2 int node_array[num_numa_node()];
3 int multi_node=0, num_pages;
4 for(int i=0; i<size && multi_node<=size/2; i++) {
5 alloc_t type = get_allocType(list[i].ptr);
6 int start_node, end_node;
7 if(type == BLOCK_CYCLIC) {
8 start_node=list[i].start/get_blockSize(list[i].ptr);
9 end_node=list[i].end/get_blockSize(list[i].ptr);

10 num_pages = (end-start)/PAGE_SIZE;
11 } else { /* type=INTERLEAVE */
12 size_t page_lb=get_pageID(list[i].ptr, list[i].start);
13 size_t page_hb=get_pageID(list[i].ptr, list[i].end);
14 start_node=page_lb % num_numa_node();
15 end_node=page_ub % num_numa_node();
16 num_pages=1;
17 }
18 if(start_node != end_node) multi_node++;
19 else node_array[start_node]+=num_pages;
20 }
21 if(multi_node>size/2) return logical_root_place();
22 place_t* pl=node_with_maxpages(node_array);
23 if(pl==current_worker_numaNode()) return my_leafPlace();
24 else return pl;
25 }

Fig. 6. Pseudocode to identify the best place to execute an
async_hinted

B. Mapping data-affinity hints to place in HPT

Figure 6 shows the pseudocode of the method
find_place used inside an async_hinted for finding
the optimal place for execution, i.e., the place containing
the maximum number of physical pages of the memory
accessed inside an async_hinted. We first iterate over all
the hints provided by the user (Line 4), and for each hint, we
calculate the NUMA nodes that contain the physical pages for
start and end indices of the array access (Lines 7– 17).
NUMA memory manager APIs get_blockSize and
get_pageID assist in this calculation. This iteration is
aborted if half of the hints are for memory ranges spanning
over multiple NUMA nodes (Line 18). In this case, the
logical root is returned as the optimal place (Line 21).
For a recursive program, this would frequently happen at
the start of recursion. If the iteration completed successfully,
the runtime would shortlist the NUMA node containing the
maximum number of pages (Line 22). If this node is the
home NUMA node of the current worker (Line 23), the
optimal place of execution is the worker’s leaf place (L3
cache), else the remote DRAM place (Line 24).

C. Hierarchical Work-Stealing

Figure 7 shows the Hierarchical Work-Stealing (HWS) in
PufferFish that is a modification of HClib’s implemen-
tation of hierarchical pop and steal. Similar to HClib,
PufferFish also uses total worker count number of deque
at each place. We refer to the HPT shown in Figure 7
for explaining HWS, but PufferFish can work with other
HPTs as well.

a) pop implementation: Unlike HClib, a victim in
PufferFish do not attempt to pop from all its parent
place if it fails to pop from its leaf place. Recall from
Section II-A, the HPT programming model in HClib requires

the programmer to specify the place of execution. A worker
can thus create a task in any place. This is not true in
PufferFish as its worker schedules an async_hinted
on HPT based on the data-affinity hints (Section IV-B).
For example, worker W0 shown in Figure 7 can push
async_hinted only at place P0, P2, P3, P4, and P5. It
cannot push at P1 (Figure 6, Line 23). A pop from P2-P4
would break the data-affinity hints. The place P0 contains
tasks whose locality is not yet determined. In contrast, place
P1 and P6 may already contain tasks pushed by other workers
guaranteed to have data-affinity to the NUMA node of worker
W0.

b) steal implementation: PufferFish does not fol-
low the steal path of HClib as it can cause load-imbalance.
Consider two async_hinted tasks T1 and T2 available
at the place P1 shown in Figure 7. Both T1 and T2 are
recursive tasks containing two and four async_hinted,
respectively (affinity to P1). T1 is stolen by the thief W0,
whereas the theif W4 steals T2. As the affinity of child tasks
of T1 and T2 are at place P1, W0 would push two-child
tasks of T1 at place P5, whereas W4 would push four child
tasks of T2 at place P6. Clearly, following the steal path
of HClib would create load-imbalance across P5 and P6.
Worker W0 in PufferFish avoids this by always attempting
its steal from a place in the fixed order of P5, P1, P6, and
finally from P0. W0 tries to steals from P1 before P6 for
avoiding the cache misses at P6. It attempts to steal from
P0 in the end as P0 only contains the tasks with unresolved
affinity. Thieves in PufferFish attempt to steal from a
place only after checking a boolean flag on that place
that indicates whether this place is idle or busy. This is
to avoid the overhead of iterating over the O(n) number of
deque at an idle place. The thief who fails to steal from
a place the first time would flip the flag to false, which
would be set to true only when a victim push a task at this
place.

D. Hierarchical Elastic Tasks

Recall from Section II-A, every task in HClib is executed
after a context switch. This hampers the locality. To reduce
these context switches, async_hinted in PufferFish
acts as a Hierarchical Elastic Task (HET) that can shrink or
puff up its parallelism depending on the place of execution
in HPT. If an async_hinted is executing at the logical
root place P0 in Figure 7 or at NUMA node place P1,
P2, P3, and P4, it behaves normally without changing its
parallelism. When a worker at a leaf place, e.g., W0, pulls
it to place P5, it first checks if there is any load imbalance
at place P5, i.e., if there was any failed steal attempt. If all
the workers W1-W3 are busy, then W0 will shrink the parallel
async_hinted task into a sequential task for preserving
its locality by avoiding context switches. This sequential task
is then directly executed by W0 without further any push
operations at its deque in place P5. It will continue doing
this until a failed steal is registered at place P5. In that
case, W0 will temporarily resume the parallel execution of

Fig. 7. Hierarchical work-stealing implementation in PufferFish

Benchmark Brief Description Configuration Execution
DAG

Total occurances
of async API

Total async
tasks created

in HClib
Source

CilkSort Mergesort with recursive
sorting and merging

8GB of long type array.
Threshold=1024 Irregular 8 11M Cilk

LULESH
Livermore Unstructured Lagrange

Explicit Shock Hydrodynamics
(LULESH) proxy application [26]

N=32 Regular 50 12M HJlib [18]

LULESH-ir Same as above Irregular 150 12M HJlib

SOR Successive Over-Relaxation (SOR) double type matrix of size 16K.
Threshold=2. Iterations=50 Regular 2 819K HClib

SOR-ir Same as above Irregular 6 821K HClib

SRAD Speckle Reducing Anisotropic
Diffusion (SRAD)

double type matrix of size16K.
Threshold=1. Iterations=50 Regular 4 327K Rodinia [27]

SRAD-ir Same as above Irregular 12 327K Rodinia

TABLE I
BENCHMARKS USED IN THIS PAPER. AN ASYNC REPRESENTS ASYNC_HINTED FOR PUFFERFISH AND CILK_SPAWN FOR CILKPLUS

Fig. 8. LULESH-ir, SOR-ir, and SRAD-ir uses the irregular execution
DAG, whereas LULESH, SOR, and SRAD uses the regular execution DAG.
Non-root and non-leaf green and black nodes have degrees three and five,
respectively. Each node is a parallel task.

async_hinted by pushing a few tasks to its deque on
place P5. It will continue this cycle of shrinking and puffing
the parallelism in async_hinted until it becomes a thief
again.

V. EXPERIMENTAL METHODOLOGY

Before presenting the evaluation of PufferFish, we first
describe our experimental methodology.

We have targeted four widely-used benchmarks for our
experimental evaluations. We chose these benchmarks as they
have been used in several prior works. Table V describe these
benchmarks and their respective configurations used in our
experimental evaluations. These benchmarks differ in terms of
their memory access density and default support for locality.
Also, the sequential overheads [19] in these benchmarks
are negligible on HClib. Further, we created two different

implementations of LULESH, SOR, and SRAD benchmarks.
Originally these benchmarks contain for-loop parallelism.
We followed the technique described in work by Chen et al.
[9], [28], and converted this loop-level parallelism into regular
and execution DAG, as shown in Figure 8.

Five different versions of each benchmark were used: a)
HClib implementation that uses async–finish APIs and
uses random work-stealing, b) CilkPlus implementation
that uses cilk_spawn-cilk_sync APIs and also uses
random work-stealing, c) PufferFish implementation that
uses async_hinted-finish APIs with data-affinity hints,
and uses PufferFish implementation of hierarchical work-
stealing (Section IV), d) HClib (HPT_DA) implementation
that uses async_hinted-finish APIs with data-affinity
hints, but use default HPT implementation of HClib for hier-
archical work-stealing (Section II-B), and e) Sequential
implementation obtained by using serial-elision. We evalu-
ated HClib and CilkPlus implementation by using both
first-touch policy in Linux and interleave allocation poli-
cies supported by numactl library. First-touch policy in
HClib and CilkPlus are reported as HClib (FT) and
CilkPlus (FT), respectively, whereas interleave allocation
policy is reported as HClib (IL) and CilkPlus (IL),
respectively.

The GCC compiler version was 7.5.0. We used the
CilkPlus version (libcilkrts5) shipped with this GCC com-
piler. HClib implementation used in this paper is down-

 4

 6

 8

 10

 12

 14

 16

2 4

S
p
e
e
e
d
u
p
 o

v
e
r

S
e
q
u
e
n
ti
a
l

Total NUMA Nodes (Each with 8 workers)

CilkPlus(FT)

CilkPlus(IL)

HClib(FT)

HClib(IL)

HClib(HPT_DA)

PufferFish

Fig. 9. Speedup of CilkSort

 3

 4

 5

 6

 7

 8

 9

 10

2 4

S
p
e
e
e
d
u
p
 o

v
e
r

S
e
q
u
e
n
ti
a
l

Total NUMA Nodes (Each with 8 workers)

CilkPlus(FT)

CilkPlus(IL)

HClib(FT)

HClib(IL)

HClib(HPT_DA)

PufferFish

(a) LULESH

 3

 4

 5

 6

 7

 8

 9

 10

2 4

S
p
e
e
e
d
u
p
 o

v
e
r

S
e
q
u
e
n
ti
a
l

Total NUMA Nodes (Each with 8 workers)

CilkPlus(FT)

CilkPlus(IL)

HClib(FT)

HClib(IL)

HClib(HPT_DA)

PufferFish

(b) LULESH-ir

Fig. 10. Speedup of LULESH with regular and irregular execution DAGs

loaded from its official github repository with the commit
id ab310a0. We used -O3 flag for compiling our bench-
marks. The benchmarks were run on a 32-core AMD EPYC
7551 processor. Maximum and minimum frequency of this
processor is 2GHz and 1.2GHz, respectively. We preserved
the default settings of the system with the CPU governor
policy set to ondemand. This machine had a total of 64GB of
RAM. The operating system was Ubuntu 18.04.3 LTS. Each
implementations were executed ten times, and we report the
mean of the execution time, along with a 95% confidence
interval.

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

2 4

S
p
e
e
e
d
u
p
 o

v
e
r

S
e
q
u
e
n
ti
a
l

Total NUMA Nodes (Each with 8 workers)

CilkPlus(FT)

CilkPlus(IL)

HClib(FT)

HClib(IL)

HClib(HPT_DA)

PufferFish

(a) SOR

 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26

2 4

S
p
e
e
e
d
u
p
 o

v
e
r

S
e
q
u
e
n
ti
a
l

Total NUMA Nodes (Each with 8 workers)

CilkPlus(FT)

CilkPlus(IL)

HClib(FT)

HClib(IL)

HClib(HPT_DA)

PufferFish

(b) SOR-ir

Fig. 11. Speedup of SOR with regular and irregular execution DAGs

 6

 8

 10

 12

 14

 16

 18

 20

 22

2 4

S
p
e
e
e
d
u
p
 o

v
e
r

S
e
q
u
e
n
ti
a
l

Total NUMA Nodes (Each with 8 workers)

CilkPlus(FT)

CilkPlus(IL)

HClib(FT)

HClib(IL)

HClib(HPT_DA)

PufferFish

(a) SRAD

 6

 8

 10

 12

 14

 16

 18

 20

 22

2 4

S
p
e
e
e
d
u
p
 o

v
e
r

S
e
q
u
e
n
ti
a
l

Total NUMA Nodes (Each with 8 workers)

CilkPlus(FT)

CilkPlus(IL)

HClib(FT)

HClib(IL)

HClib(HPT_DA)

PufferFish

(b) SRAD-ir

Fig. 12. Speedup of SRAD with regular and irregular execution DAGs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

CilkSort

LULESH

LULESH-ir

SOR
SOR-ir

SRAD
SRAD-ir

min
max

mean
geomean

T
o
ta

l
a
s
y
n
c
_
h
in

te
d

 P
u
ff
e
rF

is
h
 /
 H

C
lib

(H
P

T
_
D

A
)

 (
L
o
w

e
r

th
e
 b

e
tt
e
r)

Total NUMA Nodes (Each with 8 workers)

2 4

Fig. 13. Total number of async_hinted created in PufferFish relative
to HClib (HPT_DA)

VI. EXPERIMENTAL EVALUATION

A. Performance Analysys

Figure 9, Figure 10, Figure 11, and Figure 12 shows
the speedup obtained by executing different implementations
of CilkSort, LULESH, SOR, and SRAD, respectively, over
two and four NUMA nodes. Geomean speedup obtained
in CilkPlus (FT), CilkPlus (IL), HClib (FT),
HClib (IL), HClib (HPT_DA), and PufferFish over
the Sequential implementation by using four NUMA
nodes was 8.8×, 13.3×, 11.2×, 14.2×, 11×, and 17×, re-
spectively. A similar trend holds even with two NUMA nodes.
PufferFish wins over each implementation in both the
NUMA settings. As expected, interleave allocation policies
in CilkPlus and HClib performs significantly better the
first-touch policies in respective implementations. As both
these implementations use random work-stealing, spreading
the physical pages of the memory in round-robin over the
NUMA nodes improves the performance. HClib wins over
CilkPlus implementation in both these allocation policies.

An important point to observe is that the
HClib (HPT_DA) performs even poor than
HClib (FT) and HClib (IL). Recall from Section V,
HClib (HPT_DA) uses the same programming interface
as in PufferFish but uses the default hierarchical
work-stealing in HClib. As described in Section II-B, it
is challenging to use async_at interface in HClib in
recursive benchmarks. Hence, for HClib (HPT_DA) we
used async_hinted with data-affinity hints to map the
tasks to optimal place in HPT, but used HClib’s default
hierarchical work-stealing. We carried out this experiment to
study the performance of PufferFish’s novel hierarchical
work-stealing implementation (Section IV-C) that internally
uses hierarchical elastic tasks (Section IV-D). This analysis
clearly shows that the PufferFish parallel programming
model is a simple and scalable solution for NUMA-aware
work-stealing. HClib (HPT_DA) show poor performance
due to worker starvation (Section IV-C).

B. Analysys of Hierarchical Elastic Tasks (HET)

PufferFish uses HET implementation (Section IV-D) of
async_hinted for reducing the context switches for task

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

CilkSort

LULESH

LULESH-ir

SOR
SOR-ir

SRAD
SRAD-ir

min
max

mean
geomean

R
e
la

ti
v
e
 t
o
 H

C
L
IB

 (
F

T
)

 (
L
o
w

e
r

th
e
 b

e
tt
e
r)

Benchmarks

HClib(IL) HClib(HPT_DA) PufferFish

Fig. 14. L2-cache misses relative to HClib by using four NUMA nodes

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

CilkSort

LULESH

LULESH-ir

SOR
SOR-ir

SRAD
SRAD-ir

min
max

mean
geomean

R
e
la

ti
v
e
 t
o
 H

C
L
IB

 (
F

T
)

 (
L
o
w

e
r

th
e
 b

e
tt
e
r)

Benchmarks

HClib(IL) HClib(HPT_DA) PufferFish

Fig. 15. L3-cache misses relative to HClib by using four NUMA nodes

execution at the leaf place (L3 in our case). Figure 13 shows
the ratio by which PufferFish was able to reduce the
number of async_hinted in each benchmark as compared
to HClib (HPT_DA). Both these implementation uses the
same programming interface, but different work-stealing im-
plementations. We can observe that HET in PufferFish
reduces the task creation by up to 95% and 90% in two
and four NUMA node settings. Its effect in LULESH and
LULESH-ir is minimum because this benchmark has pipeline
parallelism, and it generates coarse granular tasks at each
stage in the pipeline. HET shows better performance with the
benchmarks having fine granular tasks.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

CilkSort

LULESH

LULESH-ir

SOR
SOR-ir

SRAD
SRAD-ir

min
max

mean
geomean

R
e
la

ti
v
e
 t
o
 H

C
L
IB

 (
F

T
)

 (
L
o
w

e
r

th
e
 b

e
tt
e
r)

Benchmarks

HClib(IL) HClib(HPT_DA) PufferFish

Fig. 16. Package energy relative to HClib by using four NUMA nodes

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

CilkSort

LULESH

LULESH-ir

SOR
SOR-ir

SRAD
SRAD-ir

D
a

ta
 C

a
c
h

e
 r

e
q

u
e

s
t

ra
te

Benchmarks

(a) Data-cache request rate tells how data intensive is an application

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

CilkSort

LULESH

LULESH-ir

SO
R

SO
R-ir

SRAD

SRAD-ir

D
a

ta
 C

a
c
h

e
 m

is
s
 r

a
te

Benchmarks

(b) Data-cache miss rate gives a measure of how often it was
necessary to get cache lines from higher levels of memory hierarchy

Fig. 17. Memory access pattern of different benchmarks by using
PufferFish over four NUMA nodes

C. Hardware Performance Counter Results

To further understand the benefits of PufferFish on
overall system performance, we used the LIKWID APIs [29] to
study the cache misses and energy savings in PufferFish.
Figure 14, Figure 15, and Figure 16, shows the L2-cache
misses, L3-cache misses, and energy savings, respectively, in
HClib (IL), HClib (HPT_DA) and PufferFish rela-
tive to HClib (FT) by using four NUMA nodes. Overall,
PufferFish achieves its goal better than HClib (IL) and
HClib (HPT_DA) across all these three results.

D. Memory Access Pattern in Benchmarks

During our speedup analysis (Section VI-A), we found
PufferFish was giving slightly lesser speedup in CilkSort
and variants of LULESH as compared to the SOR and SRAD
variants. For understanding this result, we used LIKWID to
profile the memory accesses pattern of all the benchmarks
using PufferFish execution over four NUMA nodes. We
calculated the Data Cache Request Rate (DCRR) and Data
Cache Miss Rate (DCMR), the result for the same is shown
in Figure 17(a) and Figure 17(b) respectively. DCRR tells how
data-intensive an application is, and DCMR measures how
often it was necessary to get cache lines from higher levels
of the memory hierarchy. CilkSort’s DCRR and DCMR are
on the higher side compared to SOR and SRAD as it moves
a huge chunk of arrays across the NUMA memory domains.
These values are smaller for SOR and SRAD variants as they
operate on a single array in iterations. Hence, they are already
hugely benefiting from the temporal locality. This is the reason
they achieve higher speedup even with CilkPlus (IL),

and HClib (IL). LULESH variants exhibit higher DCRR
and DCMR. This is due to the design of this benchmark.
LULESH also operates in iterations, but each iteration has 24
parallel regions operating on a wide range of arrays (total 78
arrays allocated using numa_alloc_blockcyclic API).
Hence, the locality benefit in LULESH is lesser than other
benchmarks, thereby resulting in lesser speedups.

VII. RELATED WORK

The performance of a memory-bound task-based parallel
program can be improved on a NUMA system by following
a two-step procedure: Step-1) spreading the physical pages of
the entire memory that a program would access over all the
NUMA nodes, and Step-2) scheduling the tasks on the NUMA
node that contains the physical pages of the memory accessed
by this task. Libraries such as libnuma [24] on Linux provide
a rich set of APIs to achieve the Step-1. However, Step-2 is
challenging to achieve due to the dynamic creation of tasks.
Asking the programmer to perform the top-level partitioning
of tasks across NUMA nodes is a popular choice for achieving
the Step-2 [22], [23], [1], [10], [13], [12]. This step can
also be achieved automatically in an iterative application by
profiling its iterations and using these profile results to map
tasks in remaining iterations on appropriate NUMA node [9],
[28]. Once the top-level task partitioning is done in Step-2,
a common approach to preserving the task’s locality is by
using some flavor of hierarchical work-stealing. Thieves in
HotSLAW [30] steal a small number of tasks or half of the
victim’s deque tasks based on how near or how far away
the victim is from this thief in NUMA hierarchy. Thieves
in [31] steal directly from victims under the same NUMA
hierarchy and rely on a team leader for pursuing remote steals
to reduce the cost of remote latency. NUMA work-stealing in
Cilk [12], and Intel TBB [13] used a combination of worker
local deque and mailbox [32]. Steals within a NUMA domain
are performed from worker’s local deque, whereas the mailbox
is used to push tasks with affinity to a different NUMA node.
User-specified top-level partitioning of tasks usually works
well with programs exhibiting regular execution DAG, but it
is challenging to evenly partition the dynamically unfolding
tasks in a program exhibiting irregular execution DAG.

Huang et al. proposed a data-affinity clause with OpenMP
tasks [33] as a natural way to map the tasks than HPT to
overcome this limitation. This approach was further studied
in [34], [14], and is now incorporated in the latest OpenMP 5.0
standards [15]. A common limitation across all these studies
is they don’t propose a scalable NUMA-aware work-stealing
implementation for these tasks. PufferFish overcomes this
limitation by introducing a new async–finish program-
ming model that integrates the data-affinity hints with an HPT
implementation in HClib and supports a scalable hierarchical
work-stealing implementation.

Sbı̂rlea et al. introduced elastic tasks for improving the
locality of random work-stealing [16]. They introduced a new
async API that required input from the user about the amount
of work and parallelism in that task. This information was then

used by the runtime to run on a single worker or expand to
take over multiple workers based on the system workload.
PufferFish took inspiration from them and implements
Hierarchical Elastic Tasks (HET) that do not require any extra
input from the user. HET activates itself hierarchically based
on the level of a place it is attached to in an HPT.

Recently proposed ADWS [35] expects the programmer
to specify the amount of work in each task and uses this
information for deterministic task allocation over workers. It
further uses a hierarchical work-stealing for improving the
NUMA locality. Drebes et al. utilized the data dependency
information in a data-flow programming model to decide the
NUMA aware task placement [36], [37]. PufferFish is
somewhat similar to their work in the sense that it relies on
explicit data-affinity hints instead of implicitly derived hints.

VIII. CONCLUSION

Multicore processors based on NUMA architecture are now
mainstream and poses enormous challenges in achieving a
good performance in memory-bound task-parallel programs.
Existing solutions rely on programmer-based approaches for
distributing the tasks evenly across all NUMA nodes. This
architecture-specific optimal partitioning is hard to achieve
in a dynamically unfolding task-based parallel programming
model. An orthogonal approach to solve this problem is
assigning data-affinity hints with the parallel tasks instead
of programmer specified task partitioning. In this paper, we
designed and implemented a new async–finish program-
ming model for specifying data-affinity hints. It builds over
existing solutions, but significantly improve the performance
by using a novel NUMA-aware work-stealing runtime. Our
empirical results demonstrate that we can achieve better per-
formance on a NUMA system than traditional approaches for
task parallelism.

REFERENCES

[1] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar, “Hierarchical place trees: A
portable abstraction for task parallelism and data movement,” in LCPC
’10, 2010, pp. 172–187.

[2] D. Lea, “A Java Fork/Join framework,” in JAVA, 2000, pp. 36–43.
[3] “OpenMP API, version 4.5,” accessed February 2019. [Online].

Available: http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
[4] V. Kumar, Y. Zheng, V. Cavé, Z. Budimlić, and V. Sarkar, “Habaner-

oUPC++: A compiler-free PGAS library,” in PGAS, 2014, pp. 5:1–5:10.
[5] J. Reinders, Intel Threading Building Blocks, 1st ed. O’Reilly &

Associates, Inc., 2007.
[6] A. D. Robison, “Composable parallel patterns with Intel Cilk Plus,”

Computing in Science and Engg., vol. 15, no. 2, p. 66–71, 2013.
[7] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-

tations by work stealing,” Journal of the ACM, vol. 46, Sep. 1999.
[8] J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Optimizing data

locality for fork/join programs using constrained work stealing,” in SC
’14, 2014, pp. 857–868.

[9] Q. Chen, M. Guo, and Z. Huang, “CATS: Cache aware task-stealing
based on online profiling in multi-socket multi-core architectures,” in
ICS’12, 2012, p. 163–172.

[10] Y. Guo, J. Zhao, V. Cavé, and V. Sarkar, “SLAW: A scalable locality-
aware adaptive work-stealing scheduler for multi-core systems,” in
PPoPP ’10, 2010, pp. 341–342.

[11] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave, M. Chabbi, M. Gross-
man, V. Sarkar, and Y. Yan, “Integrating asynchronous task parallelism
with MPI,” in IPDPS ’13, 2013.

[12] J. Deters, J. Wu, Y. Xu, and I. A. Lee, “A NUMA-aware provably-
efficient task-parallel platform based on the work-first principle,” in
IISWC’18, 2018, pp. 59–70.

[13] Z. Majo and T. R. Gross, “A library for portable and composable
data locality optimizations for NUMA systems,” in PPoPP’15, 2015,
p. 227–238.

[14] C. Terboven, J. Hahnfeld, X. Teruel, S. Mateo, A. Duran, M. Klemm,
S. L. Olivier, and B. R. de Supinski, “Approaches for task affinity
in OpenMP,” in IWOMP’16, N. Maruyama, B. R. de Supinski, and
M. Wahib, Eds., 2016, pp. 102–115.

[15] OpenMP ARB, OpenMP Application Programming Interface Version
5.0, November 2018. [Online]. Available: https://www.openmp.org/
wp-content/uploads/OpenMP-API-Specification-5.0.pdf

[16] A. Sbı̂rlea, K. Agrawal, and V. Sarkar, “Elastic tasks: Unifying task
parallelism and SPMD parallelism with an adaptive runtime,” in Euro-
Par’15, J. L. Träff, S. Hunold, and F. Versaci, Eds. Springer Berlin
Heidelberg, 2015, pp. 491–503.

[17] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu et al., “X10: An object-oriented approach to non-uniform
cluster computing,” in OOPSLA, 2005, pp. 519–538.

[18] S. Imam and V. Sarkar, “Habanero-Java Library: A Java 8 framework
for multicore programming,” in PPPJ, 2014, pp. 75–86.

[19] V. Kumar, D. Frampton, S. M. Blackburn, D. Grove, and O. Tardieu,
“Work-stealing without the baggage,” in OOPSLA, 2012, pp. 297–314.

[20] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of
the Cilk-5 multithreaded language,” in PLDI, 1998, pp. 212–223.

[21] Yi Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-first
scheduling policies for async-finish task parallelism,” in IPDPS, 2009,
pp. 1–12.

[22] K. Ebcioglu, V. Saraswat, and V. Sarkar, “X10: an experimental language
for high productivity programming of scalable systems.” Citeseer, 2005,
pp. 45–52.

[23] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability
and the Chapel language,” Int. J. High Perform. Comput. Appl., vol. 21,
no. 3, pp. 291–312, Aug. 2007.

[24] A. Kleen, “A NUMA api for linux,” Novel Inc, 2005.
[25] V. Kumar, “PufferFish: NUMA-aware work-stealing library using

elastic tasks (Artifact),” 2020. [Online]. Available: https://github.com/
hipec/pufferFish/archive/v1.0.zip

[26] I. Karlin, “Lulesh programming model and performance ports overview,”
Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States), Tech. Rep., 2012.

[27] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC, 2009, pp. 44–54.

[28] Q. Chen, M. Guo, and H. Guan, “LAWS: Locality-aware work-stealing
for multi-socket multi-core architectures,” in ICS’14, 2014, p. 3–12.

[29] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
ICPPW’10. IEEE, 2010, pp. 207–216.

[30] S. jai Min, C. Iancu, and K. Yelick, “Hierarchical work stealing on
manycore clusters,” in PGAS’11, 2011.

[31] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, and J. F. Prins,
“Scheduling task parallelism on multi-socket multicore systems,” in
ROSS ’11, 2011, p. 49–56.

[32] U. A. Acar, G. E. Blelloch, and R. D. Blumofe, “The data locality of
work stealing,” in SPAA ’00, 2000, p. 1–12.

[33] L. Huang, H. Jin, L. Yi, and B. Chapman, “Enabling locality-aware
computations in OpenMP,” Sci. Program., vol. 18, no. 3–4, p. 169–181,
2010.

[34] A. Muddukrishna, P. A. Jonsson, and M. Brorsson, “Locality-aware
task scheduling and data distribution for OpenMP programs on NUMA
systems and manycore processors,” Scientific Programming, 2015.

[35] S. Shiina and K. Taura, “Almost deterministic work stealing,” in SC ’19,
2019.

[36] A. Drebes, A. Pop, K. Heydemann, A. Cohen, and N. Drach, “Scalable
task parallelism for NUMA: A uniform abstraction for coordinated
scheduling and memory management,” in PACT’16, 2016, p. 125–137.

[37] A. Drebes, K. Heydemann, N. Drach, A. Pop, and A. Cohen, “Topology-
aware and dependence-aware scheduling and memory allocation for
task-parallel languages,” ACM TACO, vol. 11, no. 3, 2014.

