
Scaling HabaneroUPC++ on Heterogeneous
Supercomputers

Vivek Kumar†, Max Grossman†, Hongzhang Shan‡, and Vivek Sarkar†

†Rice University, ‡Lawrence Berkeley National Laboratory

Accelerators/co-processors have made their way into su-
percomputing systems. These modern heterogeneous systems
feature multiple layers of memory hierarchies, and produce a
high degree of thread-level parallelism. To ensure that current
and future applications perform well on these systems, it is
important that users be able to cleanly express the various
types of parallelism found in their applications while trusting
that expertly-implemented runtime libraries will schedule this
parallelism in a way that efficiently utilizes the memory
hierarchies and computational resources of their system.

In this poster we present our work-in-progress, a dis-
tributed, heterogeneous programming model in Habaner-
oUPC++, which aims to target distributed, heterogeneous
systems with multi-layered memory hierarchies through a
distributed data-driven programming model that integrates all
memory layers together through data-flow programming.

Keywords—Habanero; UPC++; PGAS; Heterogeneous comput-
ing; CUDA;

I. INTRODUCTION

Modern supercomputers are turning from multicore CPUs
to accelerators/co-processors for the core of their computa-
tional power, thanks to better energy efficiency and space
management when using accelerators [1], [2]. Because of
this, both novel and existing distributed parallel programming
models and languages have added, or are in the process
of adding accelerator support. Some of these programming
models are UPC [3], X10 [4], Phalanax [5], Kokkos [6] and
Raja [7]. Compiler directives based programming models, such
as OpenMP 4.0 [8] and OpenACC [9] support accelerators and
can be used in hybrid programming models using MPI [10],
[11] and UPC++ [12]. While some of these use compilers to
translate source codes, others are implemented in the form
of libraries. The main advantage of a library-based approach
is that it avoids the need for any custom compiler support
and allows easy integration of the new features provided by
mainstream compilers.

Existing programming models allow the offload of com-
pute kernels to accelerator, either using a synchronous model
(OpenMP, OpenACC, Kokkos, Raja), or an asynchronous
model (X10 and Phalanax). Launching a compute kernel as
an asynchronous task allows parallel execution overlap with
other asynchronous tasks. Phalanax takes one step further
and allows the creation of dependencies among asynchronous
tasks. A task executing on the GPU can signal the launch

To appear in IEEE PGAS conference as extended abstract, September 2015,
Washington, D.C., USA.

of another asynchronous task on the host or a remote node
(not allowed in X10). This is similar to task dependencies
in OpenMP. Declaring dependencies explicitly in this fashion,
rather than waiting and computation-communication overlap
directly in the calling thread, is essential for scalability. It
allows the runtime to decouple waiting for task completion
from the sequential execution of the calling thread and imple-
ment waiting efficiently. However, Phalanax does not employ
threads within a PGAS (Partitioned Global Address Space)
rank, limiting the overlap that is achievable. It has been well
studied that assigning a MPI (or PGAS) rank per processing
element is not scalable on modern supercomputers, which are
placing more and more number of cores in each node [13].

Modern HPC systems contain deep memory hierarchies.
Data accesses latencies dramatically increase as one progress
higher in the memory hierarchy. Exploiting data locality in
parallel programming on these complex systems is a challenge
for users. X10 allows managing locality through the use
of places and enables co-location of asynchronous tasks
and shared mutable locations. However, this model is flat in
structure and cannot capture vertical locality in a memory
hierarchy. Phalanx employs a memory model closely related
to X10. However, Phalanax provides a hierarchical rather than
flat model of places by adopting a model of memory spaces
that extends beyond the usual global/local divisions.

II. HABANEROUPC++

HabaneroUPC++ [14] is a compiler-free PGAS library
that supports a tighter integration of intra-process and inter-
process parallelism than standard hybrid programming ap-
proaches. It uses the UPC++ library for PGAS communica-
tion and function shipping, and the Habanero-C++ library to
provide work-stealing and multi-threaded scheduling within a
UPC++ process. HabaneroUPC++ uses C++11 lambda-based
user interfaces for launching asynchronous tasks, such as: a)
intra-process asynchronous tasks — async, asyncAwait,
asyncPhased and forasync (currently not supported to
run across accelerators); b) inter-process asynchronous tasks —
asyncAt for asynchronous remote function invocation and
asyncCopy for asynchronous local/remote copy; and c) a
barrier style finish_spmd to join all the asynchronous tasks
(both intra and inter-process).

A. Motivation to use HabaneroUPC++

We plan to use HabaneroUPC++ to implement our ideas
for a highly scalable runtime for parallel programming on
heterogeneous supercomputers. In this section, we demonstrate



 0

 2

 4

 6

 8

 10

 12

64 128 256 512

P
e

rf
o

rm
a

n
c
e

 (
D

O
F

/s
) 

x
 1

e
+

9

Total processes (1 process / socket)

4-workers

8-workers

12-workers

(a) UPC++ using OpenMP

 0

 2

 4

 6

 8

 10

 12

64 128 256 512

P
e

rf
o

rm
a

n
c
e

 (
D

O
F

/s
) 

x
 1

e
+

9

Total processes (1 process / socket)

4-workers

8-workers

12-workers

(b) HabaneroUPC++

Fig. 1: HPGMG performance comparison on Edison supercomputer.

the performance of our current implementation of Habaner-
oUPC++ on the Edison supercomputer at NERSC, using the
HPGMG [15] benchmark. HPGMG intends to be a more
balanced, robust, and diverse benchmark than the traditional
HPL [16] benchmark. It provides a better representation of
a supercomputer’s real-world performance. The Edison super-
computer is composed of homogeneous processing elements,
but comparable performance of HabaneroUPC++ relative to a
highly optimized reference implementation will augment our
choice of HabaneroUPC++ as HPC infrastructure.

The reference implementation of HPGMG uses UPC++
and OpenMP. In the HabaneroUPC++ version of HPGMG,
we replace OpenMP parallel for loops with asynchronous
forasync calls and often overlap computations and com-
munications. Each node of Edison has two sockets and each
socket has 12 cores. In each experiment we run one process
(one PGAS rank) per socket. We vary the number of threads
per process in each experiment. Figure 1 shows the results of
our experiments, where we see that HabaneroUPC++ performs
similarly to the reference implementation.

III. PLANNED IMPLEMENTATION

A. Launching Tasks across GPUs

As a first step, we plan to extend HabaneroUPC++ asyn-
chronous tasks to execute on GPGPU accelerators. Program-
mers will define a GPGPU task using C++ functors. One or
more dedicated accelerator management threads will acquire
and launch work on the GPGPUs in the system. These will be
special-purpose Habanero-C++ threads which prioritize SIMD
tasks. We plan to use the hwloc [17] hardware locality pack-
age to associate threads with GPUs in a way that minimizes
latency.

Because the address spaces of GPGPUs and their host
systems are both logically and physically separate, an address
translation step is necessary immediately prior to launching
tasks on the GPU. Variables passed by reference must be
translated into the GPGPU address space. If necessary, space
is allocated and populated for these reference variables. This
work will also investigate using CUDA Unified Memory to
reduce programmer burden.

Executed Running DDF DDDF 

Node n Node n+1 

Fig. 2: Smith-Waterman dependency graph, its hierarchical
tiling and execution.

On the GPGPU, dynamic task creation is possible through
the instantiation of additional task instances, which are stored
in a concurrent queue on the GPGPU. When the GPGPU
kernel completes, these task objects are transferred back to the
host where they are inserted in to the Habanero-C++ runtime
for scheduling.

B. Distributed Data Driven Futures

HCMPI [13] introduced Distributed Data-Driven Futures
(DDDF) object that carries a globally unique identifier to
help tasks in communicating data in a global name space.
This allows overlapping of computation and communication
in applications. HabaneroUPC++ provides intra-process Data-
Driven Future (DDF) [18] but does not allow DDDFs. We
plan to extend HCMPI’s DDDF support in HabaneroUPC++
using the RDMA put and get provided by UPC++. Unlike
HCMPI, DDDF in HabaneroUPC++ would be able to satisfy
task dependencies at all levels of memory hierarchies including
accelerators. Figure 2 shows the working of DDDFs and
DDFs using Smith-Waterman local sequencing alignment algo-
rithm [13]. Each cell in the matrix represents an asynchronous
task in different possible execution states.



C. Hierarchical Place Trees

Hierarchical Place Trees (HPT) [19] are supported in
Habanero-C [20] and Habanero-Java [21]. HPTs model com-
plex memory hierarchies of various computing systems and
provide an abstraction powerful enough to exploit locality at
each level in the memory hierarchy, without compromising per-
formance. We plan to extend HPT support in HabaneroUPC++
to provide a simple way to control locality.

REFERENCES

[1] “A slice of green with accelerators on top,”
http://www.hpcwire.com/2014/07/01/slice-green-accelerators-top/,
July 2014.

[2] “Top500 highlights,” http://www.top500.org/lists/2014/11/highlights/,
November 2014.

[3] Y. Zheng, C. Iancu, P. H. Hargrove, S.-J. Min, and K. Yelick, “Extending
unified parallel C for GPU computing,” in SIAMPP, 2010.

[4] D. Cunningham, R. Bordawekar, and V. Saraswat, “GPU programming
in a high level language: Compiling X10 to CUDA,” in X10 Workshop,
2011, p. 8.

[5] M. Garland, M. Kudlur, and Y. Zheng, “Designing a unified program-
ming model for heterogeneous machines,” in SC, 2012, pp. 1–11.

[6] D. S. H. Carter Edwards, Christian Trott, “Kokkos tutorial,” in Trilinos
User Group Meeting, 2013.

[7] R. Hornung and J. Keasler, “RAJA portability layer,” https://e-reports-
ext.llnl.gov/pdf/782261.pdf.

[8] OpenMP Architecture Review Board, “The OpenMP API specification
for parallel programming,” http://openmp.org/.

[9] “OpenACC directives for accelerators,” http://www.openacc-
standard.org/.

[10] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman,
MPI: The Complete Reference. MIT press, 1995.

[11] A. S. Bland, J. C. Wells, O. E. Messer, O. R. Hernandez, and J. H.
Rogers, “Titan: Early experience with the Cray XK6 at Oak Ridge
National Laboratory,” in CUG, 2012.

[12] Y. Zheng, A. Kamil, M. Driscoll, H. Shan, and K. Yelick, “UPC++: A
PGAS extension for C++,” in IPDPS, 2014, pp. 1105–1114.

[13] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave, M. Chabbi, M. Gross-
man, V. Sarkar, and Y. Yan, “Integrating asynchronous task parallelism
with MPI,” in IPDPS, 2013, pp. 712–725.

[14] V. Kumar, Y. Zheng, V. Cavé, Z. Budimlić, and V. Sarkar, “Habaner-
oUPC++: A compiler-free PGAS library,” in PGAS, 2014, p. 5.

[15] “High-performance geometric multigrid,” https://hpgmg.org/.

[16] A. Petitet, “HPL-a portable implementation of the high-performance
linpack benchmark for distributed-memory computers,” http://www.
netlib-. org/-benchmark/hpl/, 2004.

[17] The Open MPI Project, “Portable hardware locality (hwloc),”
http://www.open-mpi.org/projects/hwloc/.

[18] S. Tasirlar and V. Sarkar, “Data-driven tasks and their implementation,”
in ICPP, 2011, pp. 652–661.

[19] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar, “Hierarchical place trees: A
portable abstraction for task parallelism and data movement,” in LCPC,
2010, pp. 172–187.

[20] “Habanero-C Overview,” https://wiki.rice.edu/confluence/display/
HABANERO/Habanero-C, Rice University, 2013.

[21] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-Java: the new
adventures of old X10,” in PPPJ, 2011, pp. 51–61.


