
Scaling HabaneroUPC++ on Heterogeneous Supercomputers
Vivek Kumar1, Max Grossman1, Hongzhang Shan2, and Vivek Sarkar1

1 Rice University, 2 Lawrence Berkeley National Laboratory

1 Introduction
Modern supercomputers are turning from multicore CPUs
to accelerators/co-processors for the core of their
computational power, thanks to better performance,
energy efficiency, and space management when using
accelerators.

Existing programming models for these architectures
offload computational kernels to accelerators, either
synchronously (e.g., OpenMP [1] and OpenACC [2]), or
asynchronously (e.g., Phalanx [3] and X10 [4]).

Scaling on future exascale distributed, heterogeneous
supercomputers requires an efficient integration of
communication, memory management, and work
scheduling at all layers (inter-accelerator, host-
accelerator, inter-node).

2 Motivation
Distr ibuted data-dr iven programming enables
computation-communication overlap for improved
scalability:

•  Phalanx allows creating dependencies between
asynchronous tasks executing either at GPU or host
but lacks an intra-process work-stealing runtime.

•  X10 supports intra-process (place) work-stealing but
does not allow creating dependencies between host
and accelerator tasks as Phalanx does.

•  HCMPI [5] supports both distributed data-driven
programming model as well as intra-process work-
stealing but does not support accelerators.

Exploiting locality at each level of a NUMA memory
hierarchy is crucial to scaling to highly parallel systems:

•  Unlike X10, Phalanx exposes a hierarchical memory
model (places)

3 Why use HabaneroUPC++ ?
A highly scalable, compiler-free, distributed, multi-core,
task-parallel PGAS library [6].

0

2

4

6

8

10

12

64 128 256 512
0

2

4

6

8

10

12

64 128 256 512

Pe
rf

or
m

an
ce

 (
D

O
F/

s)
 x

 1
e+

9

4-workers 8-workers 12-workers

Total processes

UPC++ and OpenMP

Total processes

HabaneroUPC++ with intra-process workers

HPGMG [7] performance comparison on Edison supercomputer

4 Proposed Execution Model
Dataflow scheduling across all computational units within
a node. Use dedicated communication and accelerator
worker threads to manage resources.

 Executed Running DDF DDDF

Node n Node n+1

Smith-Waterman dependency graph, its hierarchical tiling and execution

5 Launching Tasks Across GPUs
HabaneroUPC++ accelerator runtime will focus on an
efficient implementation of :

•  Multi-GPU management, load balancing across all
GPUs and CPU cores

•  Efficient host-device and inter-device communication,
overlap with compute on work-stealing CPU and GPU
threads

•  Automated by default, enable programmer hints

•  Use of C++ functors to communicate computation to
GPUs, variadic function templates to communicate
data

class task1 : public cuda_task<task1,
 task2, int *, int> {
 __host__ __device__ void apply()(
 int i, int *A, int val) override
{
 async(test_functor(), A, val + 1);
 }
};

forasync(N, task1(), h_out, val);

References
[1] OpenMP Architecture Review Board, “The OpenMP API specification for
parallel programming,” http://openmp.org/.

[2] “OpenACC directives for accelerators”, http://www.openacc- standard.org/.

[3] M. Garland, M. Kudlur, and Y. Zheng, “Designing a unified programming model
for heterogeneous machines,” in SC, 2012, pp. 1–11.

[4] D. Cunningham, R. Bordawekar, and V. Saraswat, “GPU programming in a
high level language: Compiling X10 to CUDA,” in X10 Workshop, 2011, p. 8.

[5] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave, M. Chabbi, M. Grossman, V.
Sarkar, and Y. Yan, “Integrating asynchronous task parallelism with MPI,” in
IPDPS, 2013, pp. 712–725.

[6] V. Kumar, Y. Zheng, V. Cave, Z. Budimlic, and V. Sarkar, “HabaneroUPC++: A
compiler-free PGAS library,” in PGAS, 2014, p. 5.

[7] “High-performance geometric multigrid”, https://hpgmg.org/.

