
Vivek Kumar1, Karthik Murthy1, Vivek Sarkar1, Yili Zheng2

1 Rice University
2 Lawrence Berkeley National Laboratory

Optimized Distributed Work-Stealing

Cores/Socket System Share in Top500

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

1 (45%)

2 (55%)

Multicore Nodes in Supercomputers

Graph plotted using the data obtained from https://www.top500.org/statistics/list/

November 2006 June 2016

•  Productivity
– Several existing APIs for scientific computing
– Hard to parallelize complex irregular computations

using existing APIs
•  Ideal candidate for runtime based global load-balancing

•  Performance on multicore nodes
– Using a process per core (e.g., MPI everywhere)

on a node not scalable
– Hybrid programming using thread pool per node

•  How to design a high performance implementation of
global load-balancing

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Problem Statement

3

Productivity and Performance Challenge

4

✔ Library-based API in a PGAS library to express
irregular computations

 C++11 lambda function based API that provides serial elision

✔ Novel implementation of distributed work-stealing
 That introduces a new victim selection policy that avoid all

 inter-node failed steals

✔ Detailed performance study
 That demonstrates the benefit using scaling irregular applications up to

 12k cores of Edison supercomputer

✔ Results
 That shows that our approach delivers performance benefits up to 7%

Contributions

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Load Balancing using Work-Stealing

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Motivating Analysis

5

w1

Work-stealing in a thread pool

pop
tasks

push
tasks

w2 w3 w4

steal tasks
deque

tail

head

Core Core Core Core

•  Thread pool (intra-node)
based implementations
perform stealing using low
overhead CAS operations

Distributed Work-Stealing

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Motivating Analysis

6

Intra-node
steals

Inter-node
steals

•  Inter-node
steals are
much costlier
than intra-
node steals

Failed Steal Attempts

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Motivating Analysis

7

•  Thief fails to steal a task from victim

Intra-node
failed steals

Inter-node
failed steals

Inter-node failed
steals are more

costly than intra-
node steals

Chances to fail with

same victim
multiple times

Our Approach

•  Use HabaneroUPC++ PGAS library for multicore cluster
[Kumar et. al., PGAS 2014]
–  Several asynchronous tasking APIs

•  Provide a programming model to express irregular
computation

•  Implement a high performance distributed work-stealing
runtime that completely removes all inter-node failed steal
attempts

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016 8

N
od

e_
A

N
od

e_
X

One process with a thread pool at each node

HabaneroUPC++ Programming Model

•  C++11 lambda-function based API
•  Provides serial elision and improves productivity

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Implementation

9

asyncAny ([=] {

irregular_computation();

}); //distributed work-stealing

Distributed Work-Stealing Runtime

•  Two different implementations in HabaneroUPC++
•  BaselineWS

–  Uses prior work + some optimizations

•  SuccessOnlyWS
–  Extends BaselineWS by using a novel victim selection

policy that complete removes all inter-node failed steals

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Implementation

10

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Step-1:
Failed steal at

intra-node level

Step-2:
Local worker

request the leader
for inter-node steal

Step-6: Remote victim can send tasks,
else it’s a inter-node failed steal

BaselineWS in HabaneroUPC++

Step-4: Lock and wait for tasks from victim

Step-3: Leader finds a victim that has
sufficient number of tasks (RDMA)

11

Implementation

Step-5: Remote leader attempts to steal
tasks from its local thread-pool

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Step-1:
Failed steal at

intra-node level

Step-2:
Local worker

request the leader
for inter-node steal

SuccessOnlyWS in HabaneroUPC++

Step-3: Leader finds a victim that has
sufficient number of tasks (RDMA)

12

Implementation

Step-5: Remote leader attempts to steal
tasks from its local thread-pool

Step-6:
Repeat Step-3 and Step-4

Step-4: Asynchronous task request

Step-7: One or more remote victim will send tasks.
Break out of Step-5 (also if application terminates)

Methodology

•  Benchmarks
–  Two UTS trees T1WL and T3WL
–  NQueens

•  Computing infrastructure
–  Edison supercomputer at NERSC

•  2x12 cores per node

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Experimental Evaluation

13

Results

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Experimental Evaluation

14

 1

 10

 100

 1000

 10000

 100000

 1e+06

1536 3072 6144 12288

T
o

ta
l f

a
ile

d
 s

te
a

ls
 (

lo
g

sc
a

le
)

Total cores

T1WL T3WL NQ

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 1.1

1536 3072 6144 12288

S
p

e
e

d
u

p
 o

ve
r

B
a

se
lin

e
W

S

Total cores

T1WL T3WL NQ

Note: More results are available in the paper

(a) Total inter-node failed
steals in BaselineWS

(b) SuccessOnlyWS
speedup over BaselineWS

Total cores (24 cores/node) Total cores (24 cores/node)

Higher inter-node failed steals in BaselineWS => Better performance in SuccessOnlyWS

T1WL T3WL NQueens

Summary and Conclusion
•  Inter-node steals are costlier than intra-node steals
•  Failed inter-node steals could hamper performance
•  C++11 lambda function based API to in

HabaneroUPC++ to express complex irregular
computation that can participate in distributed work-
stealing

•  A novel implementation of distributed work-stealing
runtime in HabaneroUPC++ PGAS library that
completely removes all inter-node failed steals

•  Our novel runtime delivers performance benefits up
to 7%

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016 15

Summary

Backup Slides

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Existing Techniques for Inter-node Stealing

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016 17

•  Thread pool based hybrid runtimes [Lifflander et. al., HPDC’12,
Paudel et. al., ICPP’13]

•  Communication worker maintain ready queue of
tasks even before a remote request arrives [Paudel et. al.,
ICPP’13]

•  Load-aware steal attempts to reduce chances of
failure [Dinan et. al., ICPP’08]

•  First try random victims and on failing contact set of
victims (lifelines) that promises to send tasks
whenever they have it ready [Saraswat et. al., PPoPP’11]

Related Work

Inter-node Steal Request from Thief

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Implementation

18

 procedure Steal_AsyncAny
 while (global termination is not detected)
 V = get a random remote rank
 if (V has declared task availability in PGAS space) // RDMA
 if (I did not try to steal from V)
 queue my rank at V
 if TryLock (V) is success

 save my rank at V
 wait until V send tasks or decline

 Unlock (V)
 break from while loop if I just received asyncAny tasks
 if I receive asyncAny tasks from any victim
 forget that I contacted this victim
 reset my task receiving status

BaselineWS Runtime

SuccessOnlyWS Runtime
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Inter-node Task Transfer from Victim

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Implementation

19

procedure Send_AsyncAny
 while (there are pending inter-node steal requests)
 T = get rank of one of the queued remote thief
 steal tasks from my local workers and send to T
 forget that T contacted me
 break out of the while loop if local steal failed

 T = get rank of the only waiting remote thief
 steal tasks from local workers and send to T
 declare that now I don’t have any waiting remote thief
 publish in PGAS space asyncAny count at my place

BaselineWS Runtime

SuccessOnlyWS Runtime

1
2
3
4
5
6
7
8
9
10
11

