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•  Productivity 
– Several existing APIs for scientific computing 
– Hard to parallelize complex irregular computations 

using existing APIs 
•  Ideal candidate for runtime based global load-balancing 

•  Performance on multicore nodes 
– Using a process per core (e.g., MPI everywhere) 

on a node not scalable 
– Hybrid programming using thread pool per node 

•  How to design a high performance implementation of 
global load-balancing 
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Problem Statement 
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Productivity and Performance Challenge 
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✔ Library-based API in a PGAS library to express 
irregular computations 

      C++11 lambda function based API that provides serial elision 

✔ Novel implementation of distributed work-stealing  
        That introduces a new victim selection policy that avoid all  

        inter-node failed steals 

✔ Detailed performance study 
        That demonstrates the benefit using scaling irregular applications up to 

        12k cores of Edison supercomputer 

✔ Results  
        That shows that our approach delivers performance benefits up to 7% 

Contributions 
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Load Balancing using Work-Stealing 
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Motivating Analysis 
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•  Thread pool (intra-node) 
based implementations 
perform stealing using low 
overhead CAS operations 

 



Distributed Work-Stealing 
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Motivating Analysis 
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Intra-node 
steals 

Inter-node 
steals 

•  Inter-node 
steals are 
much costlier 
than intra-
node steals 



Failed Steal Attempts 
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Motivating Analysis 
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•  Thief fails to steal a task from victim 

Intra-node 
failed steals 

Inter-node 
failed steals 

Inter-node failed 
steals are more 

costly than intra-
node steals 

 
Chances to fail with 

same victim 
multiple times 



Our Approach 

•  Use HabaneroUPC++ PGAS library for multicore cluster 
[Kumar et. al., PGAS 2014] 
–  Several asynchronous tasking APIs 

•  Provide a programming model to express irregular 
computation 

•  Implement a high performance distributed work-stealing 
runtime that completely removes all inter-node failed steal 
attempts 
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One process with a thread pool at each node 



HabaneroUPC++ Programming Model 

•  C++11 lambda-function based API 
•  Provides serial elision and improves productivity 
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Implementation 

9

asyncAny ( [=] {
 

irregular_computation(); 

}); //distributed work-stealing 



Distributed Work-Stealing Runtime 

•  Two different implementations in HabaneroUPC++ 
•  BaselineWS 

–  Uses prior work + some optimizations 

•  SuccessOnlyWS 
–  Extends BaselineWS by using a novel victim selection 

policy that complete removes all inter-node failed steals 
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Implementation 
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Step-1:  
Failed steal at 

intra-node level 

Step-2:  
Local worker 

request the leader 
for inter-node steal 

Step-6: Remote victim can send tasks, 
else it’s a inter-node failed steal 

BaselineWS in HabaneroUPC++ 

Step-4: Lock and wait for tasks from victim 

Step-3: Leader finds a victim that has 
sufficient number of tasks (RDMA) 
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Implementation 

Step-5: Remote leader attempts to steal 
tasks from its local thread-pool 
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Step-1:  
Failed steal at 

intra-node level 

Step-2:  
Local worker 

request the leader 
for inter-node steal 

SuccessOnlyWS in HabaneroUPC++ 

Step-3: Leader finds a victim that has 
sufficient number of tasks (RDMA) 
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Implementation 

Step-5: Remote leader attempts to steal 
tasks from its local thread-pool 

Step-6:  
Repeat Step-3 and Step-4 

Step-4: Asynchronous task request 

Step-7: One or more remote victim will send tasks.  
Break out of Step-5 (also if application terminates) 



Methodology 

•  Benchmarks 
–  Two UTS trees T1WL and T3WL 
–  NQueens 

•  Computing infrastructure 
–  Edison supercomputer at NERSC 

•  2x12 cores per node 
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Experimental Evaluation 
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Results 
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Experimental Evaluation 
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(a) Total inter-node failed 
steals in BaselineWS 

(b) SuccessOnlyWS 
speedup over BaselineWS 

Total cores (24 cores/node) Total cores (24 cores/node) 

Higher inter-node failed steals in BaselineWS => Better performance in SuccessOnlyWS 
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Summary and Conclusion 
•  Inter-node steals are costlier than intra-node steals 
•  Failed inter-node steals could hamper performance 
•  C++11 lambda function based API to in 

HabaneroUPC++ to express complex irregular 
computation that can participate in distributed work-
stealing 

•  A novel implementation of distributed work-stealing 
runtime in HabaneroUPC++ PGAS library that 
completely removes all inter-node failed steals 

•  Our novel runtime delivers performance benefits up 
to 7% 
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Summary 



Backup Slides 
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Existing Techniques for Inter-node Stealing 
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•  Thread pool based hybrid runtimes [Lifflander et. al., HPDC’12, 
Paudel et. al., ICPP’13] 

•  Communication worker maintain ready queue of 
tasks even before a remote request arrives [Paudel et. al., 
ICPP’13] 

•  Load-aware steal attempts to reduce chances of 
failure [Dinan et. al., ICPP’08] 

•  First try random victims and on failing contact set of 
victims (lifelines) that promises to send tasks 
whenever they have it ready [Saraswat et. al., PPoPP’11] 

Related Work 



Inter-node Steal Request from Thief 
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Implementation 
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  procedure Steal_AsyncAny 
 while (global termination is not detected) 
  V = get a random remote rank 
  if (V has declared task availability in PGAS space) // RDMA 
   if (I did not try to steal from V) 
    queue my rank at V 
   if TryLock (V) is success 

     save my rank at V 
     wait until V send tasks or decline 

    Unlock (V) 
   break from while loop if I just received asyncAny tasks 
  if I receive asyncAny tasks from any victim 
   forget that I contacted this victim 
   reset my task receiving status      

BaselineWS Runtime 

SuccessOnlyWS Runtime 
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Inter-node Task Transfer from Victim 
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Implementation 

19

procedure Send_AsyncAny 
 while (there are pending inter-node steal requests) 
  T = get rank of one of the queued remote thief 
  steal tasks from my local workers and send to T 
  forget that T contacted me 
  break out of the while loop if local steal failed 

  T = get rank of the only waiting remote thief 
  steal tasks from local workers and send to T 
  declare that now I don’t have any waiting remote thief 
  publish in PGAS space asyncAny count at my place  
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