Optimized Distributed Work-Stealing

Vivek Kumar’, Karthik Murthy', Vivek Sarkar?, Yili Zheng?

1 Rice University
2 Lawrence Berkeley National Laboratory

Multicore Nodes in Supercomputers

Cores/Socket System Share in Top500

Others

2 (55%) (10%) 16 (10%)

6 (13.2%)
12 (30%)
8 (21.6%)
1(45%) 10 (15%)
November 2006 June 2016
Graph plotted using the data obtained from https://www.top500.org/statistics/list/ ‘

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Problem Statement

Productivity and Performance Challenge

* Productivity
— Several existing APIs for scientific computing

— Hard to parallelize complex irregular computations
using existing APls
* |deal candidate for runtime based global load-balancing

« Performance on multicore nodes

— Using a process per core (e.g., MPI everywhere)
on a node not scalable

— Hybrid programming using thread pool per node

« How to design a high performance implementation of
global load-balancing ‘

Optimized Distributed Work-Stealing | Kumar et al. | 1A% 2016 3

Contributions

v’ Library-based APl in a PGAS library to express
iIrregular computations

C++11 lambda function based API that provides serial elision

v’ Novel implementation of distributed work-stealing

That introduces a new victim selection policy that avoid all

inter-node failed steals

v’ Detailed performance study

That demonstrates the benefit using scaling irregular applications up to

12k cores of Edison supercomputer

v’ Results

That shows that our approach delivers performance benefits up to 7%

b

Optimized Distributed Work-Stealing | Kumar et al. | 1A% 2016 4

Motivating Analysis

Load Balancing using Work-Stealing

steal tasks

/

Fél%&
(

W, W, Wy W,

Gor) [gore] fpoe] foor)

push
tasks

Work-stealing in a thread pool

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Thread pool (intra-node)
based implementations
perform stealing using low
overhead CAS operations

Motivating Analysis

Distributed Work-Stealing

* Inter-node
steals are
much costlier
than intra-
node steals

eeeee

. . Intra-node
= steals

Inter-node
steals

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016 6

b

Motivating Analysis

Failed Steal Attempts

» Thief fails to steal a task from victim Inter-node failed
steals are more

costly than intra-
node steals

> _ . | Chances to fail with
T P F—17F T same victim
=l i B | multiple times

eeeee

= Intra-node
= failed steals

Inter-node
failed steals

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016 7

Our Approach

Node A
Node X

Wi
re

W, W, Wy oow, W, W oW,

One process with a thread pool at each node

« Use HabaneroUPC++ PGAS library for multicore cluster
[Kumar et. al., PGAS 2014]
— Several asynchronous tasking APls

* Provide a programming model to express irregular
computation

« Implement a high performance distributed work-stealing
runtime that completely removes all inter-node failed steal
attempts

Optimized Distributed Work-Stealing | Kumar et al. | 1A% 2016 8

b

Implementation

HabaneroUPC++ Programming Model

asyncAny C [=] {

irregular_computation();

}); //distributed work-stealing

« C++11 lambda-function based API
* Provides serial elision and improves productivity

Optimized Distributed Work-Stealing | Kumar et al. | 1A% 2016 9

Implementation

Distributed Work-Stealing Runtime

« Two different implementations in HabaneroUPC++
« BaselineWs

— Uses prior work + some optimizations

« SuccessOnlyWsS

— Extends BaselineWS by using a novel victim selection
policy that complete removes all inter-node failed steals

Optimized Distributed Work-Stealing | Kumar et al. | 1A% 2016 10

Implementation

BaselineWS in HabaneroUPC++

Step-1: Step-6: Remote victim can send tasks,
Failed steal at else it's a inter-node failed steal

intra-node level

Step-5: Remote leader attempts to steal

Step-2: :
tasks from its local thread-pool

Local worker
request the leader

for inter-node steal
Step-3: Leader finds a victim that has

sufficient number of tasks (RDMA) ‘

Step-4: Lock and wait for tasks from victim

Optimized Distributed Work-Stealing | Kumar et al. | 1A% 2016 11

Implementation

SuccessOnlyWsS in HabaneroUPC++

Step-7: One or more remote victim will send tasks.

LT e L

:;.n:‘ r-"

Step-1: 7 Break out of Step-5 (also if application terminates)
Failed steal at
intra-node level -

Step-2: Step-5: Remote leader attempts to steal
Local wor.ker tasks from its local thread-pool

request the leader

for inter-node steal Step-6:
Step-3: Leader finds a victim that has

R t Step-3 and Step-4
sufficient number of tasks (RDMA) epeat step-o and step

Step-4: Asynchronous task request ‘

Optimized Distributed Work-Stealing | Kumar et al. | 1A% 2016 12

Experimental Evaluation

Methodology

« Benchmarks
— Two UTS trees T1WL and T3WL

— NQueens

« Computing infrastructure
— Edison supercomputer at NERSC

» 2x12 cores per node

Optimized Distributed Work-Stealing | Kumar et al. | 1A% 2016 13

Experimental Evaluation

Higher inter-node failed steals in BaselineWS => Better performance in SuccessOnlyWS
1.1
1e+06 5
lg : g 1.09
S 100000 - 2 1.08
O') —
ks : o 1.07
< 10000 f § 106
S 1000 1 = 1.05
2 . 3 1.04
KE Z 5
s 10 - o 1.02
5 _ S 1.01
1 - 1 -
1536 3072 6144 12288 1536 3072 6144 12288
Total cores (24 cores/node) Total cores (24 cores/node)
(a) Total inter-node failed (b) SuccessOnlyWS
steals in BaselineWsS speedup over BaselineWS

B 3wl Noueens ‘

Note: More results are available in the paper
Optimized Distributed Work-Stealing | Kumar et al. | 1A% 2016 14

Summary and Conclusion

* Inter-node steals are costlier than intra-node steals
 Failed inter-node steals could hamper performance

« C++11 lambda function based API to in
HabaneroUPC++ to express complex irregular
computation that can participate in distributed work-
stealing

* A novel implementation of distributed work-stealing
runtime in HabaneroUPC++ PGAS library that
completely removes all inter-node failed steals

* Our novel runtime delivers performance benefits up

to 7% 6

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016 15

Backup Slides

Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016

Related Work

Existing Techniques for Inter-node Stealing

 Thread p00| based hybrid runtimes [Lifflander et. al., HPDC'12,

Paudel et. al., ICPP’13]

« Communication worker maintain ready queue of

tasks even before a remote request arrives pauweiet. al,
ICPP’13]

+ Load-aware steal attempts to reduce chances of
failure [Dinan et. al., ICPP’08]

 First try random victims and on failing contact set of
victims (lifelines) that promises to send tasks
whenever they have it ready [Saraswat et. al., PPoPP’11] i
Optimized Distributed Work-Stealing | Kumar et al. | IA3 2016 17

Implementation

1
2
3
4
)
6
4
8

9

10
11
12
13
14

Inter-node Steal Request from Thief

procedure Steal AsyncAny BaselineWS Runtime
while (global termination is not detected) SuccessOnlyWS Runtime
V = get a random remote rank
if (V has declared task availability in PGAS space) // RDMA
if (I did not try to steal from V)
gqueue my rank at V
if TryLock (V) is success
save my rank at V
wait until V send tasks or decline
Unlock (V)
break from while loop if | just received asyncAny tasks
if | receive asyncAny tasks from any victim
forget that | contacted this victim
reset my task receiving status ‘

Optimized Distributed Work-Stealing | Kumar et al. | 1A% 2016 18

Implementation

Inter-node Task Transfer from Victim

procedure Send_AsyncAny

while (there are pending inter-node steal requests)
T = get rank of one of the queued remote thief
steal tasks from my local workers and sendto T
forget that T contacted me
break out of the while loop if local steal failed

T = get rank of the only waiting remote thief

steal tasks from local workers and send to T

0 declare that now | don’t have any waiting remote thief

1 publish in PGAS space asyncAny count at my place

1
2
3
4
)
6
V4
8
9
1
1

BaselineWS Runtime

SuccessOnlyWS Runtime

Optimized Distributed Work-Stealing | Kumar et al. | 1A% 2016

19

