
Vivek Kumar1, Stephen M Blackburn1, David Grove2, Daniel
Frampton1, 3

1 The Australian National University
2 IBM T.J. Watson Research
3 Microsoft

High Performance Runtime for
Next Generation Parallel Programming

Languages

Hardware and Software Today

Background

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar 2	

3	

The Challenge

Background

•  Productivity
•  Language based features to expose

parallelism – X10, Cilk, Habanero etc

•  Performance
•  Work–stealing scheduling

•  Portability
•  Managed runtime to hide the hardware

complexities

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

4	

Options ?

•  Productivity
•  Language based features to expose

parallelism – X10, Cilk, Habanero-Java etc

•  Performance
•  Work–stealing scheduling

•  Portability
•  Managed runtime to hide the hardware

complexities

Background

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

5	

Thesis Statement

High performance languages are using managed

platforms for productivity and portability, but

performance is inadequate. By exploiting and

extending the underlying mechanisms of managed

runtimes, implementation of these languages will be

able to deliver scalability and performance at the

levels necessary for widespread uptake.

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

Contributions

6	

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

Contributions

7	

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

Contributions

8	

High Performance

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

Contributions

9	

High Productivity High Performance

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

Contributions

10	

High Productivity High Performance Highly
Competitive

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

Understanding Work–Stealing

11	

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

Understanding Work–Stealing

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

Understanding Work–Stealing

13	

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

Methodology
•  Hardware Platform

–  2x8 cores Intel Xeon E5-2450

•  Software Platform
–  Jikes RVM (3.1.3)

•  Benchmarks
–  UTS, BarnessHut, FFT, Jacobi, LUDecomposition,

JGF_SeriesTest, HeatDiffusion, PointCorrelation,
NQueens, Matmul, CilkSort and Fibonacci

•  To evaluate performance
–  JMetal (sourceforge project with 327 Java files)

•  To evaluate the productivity of our system

14	

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

15	

Big…… But How Big ??

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

Motivating Analysis

16	

1

2

4

geomean

Habanero-Java ManagedX10 Fork-Join

Sequential Overhead

Motivating Analysis

3.7x

2.5x

1.6x

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

17	

Steal to Task Ratio

Motivating Analysis

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threads

18	

Insights

•  Move the overheads from common case to the
rare case

•  Re-use existing mechanisms inside modern
managed runtimes

Motivating Analysis

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

foo() {	
 finish {	
 async X = S1();	
 Y = S2();	
 }	
}	

Implementation

steal

….

THIEF

S1

foo

C

B

A S
ta

ck
 G

ro
w

th
 D

ire
ct

io
n

VICTIM

Yieldpoint Mechanism

foo

C

B

A

THIEF

S2

•  Yieldpoint mechanism
•  On-stack replacement
•  Java try/catch exceptions
•  Dynamic code patching

Evaluation

20	

1

2

4

geomean

Habanero-Java ManagedX10 Fork-Join TryCatchWS

Sequential Overhead

7%

3.7x

2.5x

1.6x

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

21	

Steal Rate

Motivating Analysis

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

0

10

20

30

40

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
te

al
s

pe
r m

ill
i-s

ec
on

ds

Threads

Dynamic Overhead

Motivating Analysis

22	

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

0

10

20

30

40

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
yn

am
ic

 o
ve

rh
ea

d
(%

)

Threads

23	

Insights

•  Still the same
–  Re-use existing mechanisms inside modern managed

runtimes

Motivating Analysis

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

Return Barrier
Hijack a return and bridge to some other method

E

D

C

B

A S
ta

ck
 G

ro
w

th
 D

ire
ct

io
n

Implementation

24	

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

Dynamic Overhead

Evaluation

25	

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

0

0.5

1

1.5

2

geomean

Old New

D
yn

am
ic

 o
ve

rh
ea

d
(%

) For threads=16

26	

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

Productivity in a Large Code Base

•  Project with several hundred files
•  Multiple dependencies (inheritance…)
•  Achieving parallelism

–  Minimal changes
–  Track fields with atomic updates
–  Avoid deadlocks

27	

Motivating Analysis

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

Java Language Annotations

Implementation

•  Annotate and leave the rest on compiler
•  Parallelism

–  syncsteal {…}
–  steal {…}

•  Data centric concurrency control (Dolby et al. 2012)
–  @Atomicsets(X)
–  @Atomic(X)
–  @AliasAtomic(Y=this.X)

28	

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

29	

So Where Do We Stand …?

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p
e

e
d

u
p
 o

ve
r

S
e
q

u
e
n
tia

l

Threads

Habanero-Java

ManagedX10

Fork-Join

TryCatchWS

Work–Stealing Performance

Evaluation

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar 30	

Jacobi

Work–Stealing Performance

Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p
e
e
d
u
p
 o

ve
r

S
e
q
u
e
n
tia

l

Threads

Habanero-Java

ManagedX10

Fork-Join

TryCatchWS

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar 31	

UTS

Summary and Conclusion
•  Work–stealing overheads – sequential and dynamic
•  Reused existing mechanisms inside modern managed

runtimes
–  Yieldpoint mechanism
–  On-stack replacement
–  Java try/catch exception handling
–  Dynamic code patching
–  Return barrier

•  Effectively eliminated sequential overhead (only 7%)
•  Halved the dynamic overhead
•  Annotations in Java to generate work-stealing calls and

synchronization blocks

Summary

32	

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar

