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Background 
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The Challenge 

Background 

•  Productivity  
•  Language based features to expose 

parallelism – X10, Cilk, Habanero etc 

•  Performance 
•  Work–stealing scheduling 

•  Portability 
•  Managed runtime to hide the hardware 

complexities 
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Options ? 

•  Productivity  
•  Language based features to expose 

parallelism – X10, Cilk, Habanero-Java etc 

•  Performance 
•  Work–stealing scheduling 

•  Portability 
•  Managed runtime to hide the hardware 

complexities 

 

Background 
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Thesis Statement 

High performance languages are using managed 

platforms for productivity and portability, but 

performance is inadequate. By exploiting and 

extending the underlying mechanisms of managed 

runtimes, implementation of these languages will be 

able to deliver scalability and performance at the 

levels necessary for widespread uptake. 

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar 



Contributions 
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High Performance 
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High Productivity High Performance 
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High Productivity High Performance Highly 
Competitive 
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Understanding Work–Stealing 
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Understanding Work–Stealing 
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Understanding Work–Stealing 
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Methodology 
•  Hardware Platform 

–  2x8 cores Intel Xeon E5-2450 

•  Software Platform 
–  Jikes RVM (3.1.3) 

•  Benchmarks 
–  UTS, BarnessHut, FFT, Jacobi, LUDecomposition,       

JGF_SeriesTest, HeatDiffusion, PointCorrelation, 
NQueens, Matmul, CilkSort and Fibonacci 

•  To evaluate performance 
–  JMetal (sourceforge project with 327 Java files) 

•  To evaluate the productivity of our system 
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Big…… But How Big ?? 
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Motivating Analysis 
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Steal to Task Ratio 

Motivating Analysis 
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Insights 

•  Move the overheads from common case to the 
rare case 

•  Re-use existing mechanisms inside modern 
managed runtimes 

Motivating Analysis 
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foo() {	
    finish {	
        async X = S1();	
        Y = S2();	
    }	
}	

Implementation 
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Yieldpoint Mechanism 
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•  Yieldpoint mechanism 
•  On-stack replacement 
•  Java try/catch exceptions  
•  Dynamic code patching 



Evaluation 
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Steal Rate 

Motivating Analysis 
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Dynamic Overhead 

Motivating Analysis 
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Insights 

•  Still the same 
–  Re-use existing mechanisms inside modern managed 

runtimes 

Motivating Analysis 
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Return Barrier 
Hijack a return and bridge to some other method 
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Dynamic Overhead 

Evaluation 
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Productivity in a Large Code Base 

•  Project with several hundred files 
•  Multiple dependencies (inheritance…) 
•  Achieving parallelism 

–  Minimal changes 
–  Track fields with atomic updates 
–  Avoid deadlocks 
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Motivating Analysis 
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Java Language Annotations 

Implementation 

•  Annotate and leave the rest on compiler 
•  Parallelism 

–  syncsteal {…}   
–  steal {…} 

•  Data centric concurrency control (Dolby et al. 2012) 
–  @Atomicsets(X) 
–  @Atomic(X) 
–  @AliasAtomic(Y=this.X) 
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So Where Do We Stand …? 

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar 



 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p
e

e
d

u
p
 o

ve
r 

S
e
q

u
e
n
tia

l

Threads

Habanero-Java

ManagedX10

Fork-Join

TryCatchWS

Work–Stealing Performance 

Evaluation 
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Work–Stealing Performance 

Evaluation 

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p
e
e
d
u
p
 o

ve
r 

S
e
q
u
e
n
tia

l

Threads

Habanero-Java

ManagedX10

Fork-Join

TryCatchWS

High Performance Runtime for Next Generation Parallel Programming Languages | Kumar 31	



UTS 



Summary and Conclusion 
•  Work–stealing overheads – sequential and dynamic 
•  Reused existing mechanisms inside modern managed 

runtimes 
–  Yieldpoint mechanism 
–  On-stack replacement 
–  Java try/catch exception handling 
–  Dynamic code patching 
–  Return barrier  

•  Effectively eliminated sequential overhead (only 7%) 
•  Halved the dynamic overhead 
•  Annotations in Java to generate work-stealing calls and 

synchronization blocks 

Summary 
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