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The “New” Era of Computing 

•  Commodity multi-core processors  
– HPC è servers è laptops è mobile devices 
 

•  Software parallelism no longer optional 
 

•  Wide adoption of managed languages 
 

Research Opportunities Abound J 
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Our Research Question 

 How can we apply the 
 

 capabilities of managed language runtimes  
 
to enable applications with task-based 
parallelism  
 
to effectively exploit current and future 
hardware? 
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Talk Outline 

•  Background on X10 and Work-Stealing 
•  Our Base System 

– Try-Catch Work-Stealing [OOPSLA 2012] 
•  Friendly Barriers [VEE 2014] 

– Motivating analysis 
– How we apply return barriers 
– Performance results 

•  Conclusions 
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X10 Summary 

• X10 is 
– a programming language 
– an open-source tool chain 

•  compiles X10 to C++ or Java 

• X10 tackles programming at scale 
– scale out: run across many distributed nodes 
– scale up: exploit multi-core and accelerators 
– double goal: productivity and performance 
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Task Parallelism in X10 
fib(10) 

fib(9) 

finish 

fib(8) 

async 

fib(8) 

finish 

async 

fib(7) 

static def fib(n:Long):Long { 
 val t1, t2:Long; 
 if (n < 2) return 1; 
 finish { 
  async t1 = fib(n-1); 
  t2 = fib(n-2); 
 } 
 return t1 + t2; 

} 
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X10 
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Understanding Work–Stealing 



Work–Stealing 
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Work–Stealing 
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Initiation 

Termination  

State 
Management  

Work–Stealing 
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Work-Stealing Schedulers 

•  Common features 
– a pool of worker threads 
– per-worker deque of pending tasks 
– worker pushes and pops tasks from its deque 
–  idle worker steals tasks from another worker's 

deque 
•  Widely used 

– Cilk, Java Fork/Join, TBB, X10, Habenero, … 
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Work–Stealing 
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Work-Stealing Without the Baggage 
OOPSLA 2012 

Our Prior Work 

•  JavaWS (Try-Catch) 
– Reduced sequential 

overheads of work-stealing 
from 4.1x to 15% 

– Our baseline system 
•  DefaultWS 



foo() {	
    finish {	
        async X = S1();	
        Y = S2();	
    }	
}	

Our Prior Work 
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Yieldpoint Mechanism 

•  Yieldpoint mechanism 
•  On-stack replacement 
•  Java try/catch exceptions  
•  Dynamic code patching 
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Motivating Analysis 



Methodology 
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•  Benchmarks 
–  Jacobi 
–  FFT 
– CilkSort 
–  Barnes-Hut 
– UTS 
–  LU Decomposition (LUD) 

•  Hardware platform 
–  2 Intel Xeon E5-2450 

–  8 cores each 

•  Software platform 
–  Jikes RVM (3.1.3) 

Motivating Analysis 
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Steals To Task Ratio 

Motivating Analysis 
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DefaultWS 
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1 in 10,000 
stolen 
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Steal Rate 
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Dynamic Overhead (Victim Stalled) 

Motivating Analysis 
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Insights 

•  Forcing victim to wait inside yieldpoint at 
every steal attempt is inefficient 

•  Re-use existing mechanisms inside 
modern managed runtime to reduce victim 
wait time 

Motivating Analysis 
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Approach 

•  Use return barrier to “protect” the victim 
from thief 
ü Victim oblivious to steal from thief 
ü Cost of barrier only when victim unwind past 

the barrier 
ü When above the barrier, victim sees no cost 
ü More concurrency between thief and its victim  
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Implementation 
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Return Barrier 
•  Allows runtime to intercept a common event 
•  Hijack a return and bridge to some other method 
•  Register and stack state preserved 
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Performance Evaluation 
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Performance Benefit Relative to DefaultWS 
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Comparative Performance 

Evaluation 
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Comparative Performance 
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Summary and Conclusion 
•  Big Picture: Laziness pays off 
– DefaultWS extremely efficient/effective 

•  Tackling dynamic overheads 
– grows as parallelism increases 
– grows as steal rate increases 

•  Return barrier mechanism protects victim from thief  
–  Victim oblivious to thief’s activities 

•  Return barrier halves dynamic overhead 
•  Performance benefit (vs DefaultWS) of up to 20% 

Summary 
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