
Vivek Kumar1, Stephen M Blackburn1, David Grove2

1 The Australian National University
2 IBM T.J. Watson Research

Friendly Barriers: Efficient Work-Stealing
With Return Barriers

The “New” Era of Computing

•  Commodity multi-core processors
– HPC è servers è laptops è mobile devices

•  Software parallelism no longer optional

•  Wide adoption of managed languages

Research Opportunities Abound J
 Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 2

Our Research Question

 How can we apply the

 capabilities of managed language runtimes

to enable applications with task-based
parallelism

to effectively exploit current and future
hardware?

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 3

Talk Outline

•  Background on X10 and Work-Stealing
•  Our Base System

– Try-Catch Work-Stealing [OOPSLA 2012]
•  Friendly Barriers [VEE 2014]

– Motivating analysis
– How we apply return barriers
– Performance results

•  Conclusions
Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 4

X10 Summary

• X10 is
– a programming language
– an open-source tool chain

•  compiles X10 to C++ or Java

• X10 tackles programming at scale
– scale out: run across many distributed nodes
– scale up: exploit multi-core and accelerators
– double goal: productivity and performance

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 5

X10

Task Parallelism in X10
fib(10)

fib(9)

finish

fib(8)

async

fib(8)

finish

async

fib(7)

static def fib(n:Long):Long {
 val t1, t2:Long;
 if (n < 2) return 1;
 finish {
 async t1 = fib(n-1);
 t2 = fib(n-2);
 }
 return t1 + t2;

}

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 6

X10

7 Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

Understanding Work–Stealing

Work–Stealing

Work-Stealing Without The Baggage | Kumar et al.| OOPSLA’12 8	

Work–Stealing

Work-Stealing Without The Baggage | Kumar et al.| OOPSLA’12 9	

Work–Stealing

Work-Stealing Without The Baggage | Kumar et al.| OOPSLA’12 10	

Work–Stealing

Work-Stealing Without The Baggage | Kumar et al.| OOPSLA’12 11	

Initiation

Termination

State
Management

Work–Stealing

Work-Stealing Without The Baggage | Kumar et al.| OOPSLA’12 12	

Work-Stealing Schedulers

•  Common features
– a pool of worker threads
– per-worker deque of pending tasks
– worker pushes and pops tasks from its deque
–  idle worker steals tasks from another worker's

deque
•  Widely used

– Cilk, Java Fork/Join, TBB, X10, Habenero, …

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 13

Work–Stealing

14 Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

Work-Stealing Without the Baggage
OOPSLA 2012

Our Prior Work

•  JavaWS (Try-Catch)
– Reduced sequential

overheads of work-stealing
from 4.1x to 15%

– Our baseline system
•  DefaultWS

foo() {	
 finish {	
 async X = S1();	
 Y = S2();	
 }	
}	

Our Prior Work

steal

….

THIEF

foo

C

B

A S
ta

ck
 G

ro
w

th
 D

ire
ct

io
n

VICTIM

Yieldpoint Mechanism

•  Yieldpoint mechanism
•  On-stack replacement
•  Java try/catch exceptions
•  Dynamic code patching

15 Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

foo() {	
 finish {	
 async X = S1();	
 Y = S2();	
 }	
}	

Our Prior Work

steal

….

THIEF

foo

C

B

A S
ta

ck
 G

ro
w

th
 D

ire
ct

io
n

VICTIM

foo

C

B

A

THIEF

•  Yieldpoint mechanism
•  On-stack replacement
•  Java try/catch exceptions
•  Dynamic code patching

16 Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

foo() {	
 finish {	
 async X = S1();	
 Y = S2();	
 }	
}	

Our Prior Work

foo

C

B

A S
ta

ck
 G

ro
w

th
 D

ire
ct

io
n

VICTIM

foo

C

B

A

THIEF

S2

•  Yieldpoint mechanism
•  On-stack replacement
•  Java try/catch exceptions
•  Dynamic code patching

17 Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

foo() {	
 finish {	
 async X = S1();	
 Y = S2();	
 }	
}	

Our Prior Work

foo

C

B

A S
ta

ck
 G

ro
w

th
 D

ire
ct

io
n

VICTIM

foo

C

B

A

THIEF

S2

•  Yieldpoint mechanism
•  On-stack replacement
•  Java try/catch exceptions
•  Dynamic code patching

18 Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

19 Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

Motivating Analysis

Methodology

20 Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

•  Benchmarks
–  Jacobi
–  FFT
– CilkSort
–  Barnes-Hut
– UTS
–  LU Decomposition (LUD)

•  Hardware platform
–  2 Intel Xeon E5-2450

–  8 cores each

•  Software platform
–  Jikes RVM (3.1.3)

Motivating Analysis

21

Steals To Task Ratio

Motivating Analysis
S

te
al

s
/ T

as
ks

Threads

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

DefaultWS

1 in 10
stolen

1 in 10,000
stolen

22

Steal Rate

Motivating Analysis
S

te
al

s
pe

r m
ill

i-s
ec

on
ds

Threads

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

DefaultWS

23

Dynamic Overhead (Victim Stalled)

Motivating Analysis
D

yn
am

ic
 o

ve
rh

ea
d

(%
)

Threads

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

DefaultWS

24

Insights

•  Forcing victim to wait inside yieldpoint at
every steal attempt is inefficient

•  Re-use existing mechanisms inside
modern managed runtime to reduce victim
wait time

Motivating Analysis

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

25

Approach

•  Use return barrier to “protect” the victim
from thief
ü Victim oblivious to steal from thief
ü Cost of barrier only when victim unwind past

the barrier
ü When above the barrier, victim sees no cost
ü More concurrency between thief and its victim

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

26 Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

Implementation

27	

Return Barrier
•  Allows runtime to intercept a common event
•  Hijack a return and bridge to some other method
•  Register and stack state preserved

E

D

C

B

A

TOP

BASE

S
ta

ck
 G

ro
w

th
 D

ire
ct

io
n Frame

Pointer
Return

Address

Frame C Method C Frame C

Frame D

Implementation

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

Method C

28	

Return Barrier
•  Allows runtime to intercept a common event
•  Hijack a return and bridge to some other method
•  Register and stack state preserved

E

D

C

B

A

TOP

BASE

S
ta

ck
 G

ro
w

th
 D

ire
ct

io
n Frame

Pointer
Return

Address

Frame C Method C Frame C

Frame D

Hijacked
Frame
Pointer

Hijacked
Return

Address

Frame C Method C

trampoline method

Implementation

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

trampoline
method

29

TOP

BASE

S
ta

ck
 G

ro
w

th
 D

ire
ct

io
n

Yieldpoint
mechanism

Thief Installs Return Barrier

Implementation

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

30

TOP

BASE

S
ta

ck
 G

ro
w

th
 D

ire
ct

io
n

Victim Moves The Return Barrier

Implementation

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

31

TOP

BASE

S
ta

ck
 G

ro
w

th
 D

ire
ct

io
n

Victim Moves The Return Barrier

Implementation

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

32

TOP

BASE

S
ta

ck
 G

ro
w

th
 D

ire
ct

io
n

Robbing A Victim With Return Barrier

Yieldpoint
mechanism

Implementation

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

33 Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

Performance Evaluation

34

Dynamic Overhead

D
yn

am
ic

 O
ve

rh
ea

d
(%

)
Evaluation

DefaultWS ReturnBarrierWS

Threads = 16

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

35

Performance Benefit Relative to DefaultWS

P
er

fo
rm

an
ce

 B
en

ef
it

Evaluation

ReturnBarrierWS

Threads = 16

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

To
ta

l F
re

e
S

te
al

s
(%

)

Threads

Free Steals From Return Barrier

Evaluation

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 36

R
et

ur
n

B
ar

rie
r O

ve
rh

ea
d

(%
)

Threads

Overhead of Executing Return Barrier

Evaluation

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 37

Comparative Performance

Evaluation

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 38

Threads

S
pe

ed
up

 o
ve

r S
eq

ue
nt

ia
l

Jacobi

Comparative Performance

Evaluation

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 39

Threads

S
pe

ed
up

 o
ve

r S
eq

ue
nt

ia
l

UTS

Summary and Conclusion
•  Big Picture: Laziness pays off
– DefaultWS extremely efficient/effective

•  Tackling dynamic overheads
– grows as parallelism increases
– grows as steal rate increases

•  Return barrier mechanism protects victim from thief
–  Victim oblivious to thief’s activities

•  Return barrier halves dynamic overhead
•  Performance benefit (vs DefaultWS) of up to 20%

Summary

40 Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

